Server IP : 104.21.38.3 / Your IP : 162.158.108.78 Web Server : Apache System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64 User : www ( 1000) PHP Version : 7.4.33 Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /www/server/mysql/src/sql/ |
Upload File : |
/* Copyright (c) 2000, 2023, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "log_event.h" #include "base64.h" // base64_encode #include "binary_log_funcs.h" // my_timestamp_binary_length #ifndef MYSQL_CLIENT #include "debug_sync.h" // debug_sync_set_action #include "my_dir.h" // my_dir #include "log.h" // Log_throttle #include "rpl_mts_submode.h" // Mts_submode #include "rpl_rli.h" // Relay_log_info #include "rpl_rli_pdb.h" // Slave_job_group #include "rpl_slave.h" // use_slave_mask #include "sql_base.h" // close_thread_tables #include "sql_cache.h" // QUERY_CACHE_FLAGS_SIZE #include "sql_db.h" // load_db_opt_by_name #include "sql_load.h" // mysql_load #include "sql_locale.h" // my_locale_by_number #include "sql_parse.h" // mysql_test_parse_for_slave #include "sql_show.h" // append_identifier #include "transaction.h" // trans_rollback_stmt #include "tztime.h" // Time_zone #include "rpl_msr.h" // channel_map #include "binary_log.h" // binary_log #include "pfs_file_provider.h" #include "mysql/psi/mysql_file.h" #include <mysql/psi/mysql_statement.h> #include "transaction_info.h" #include "sql_class.h" #include "mysql/psi/mysql_transaction.h" #include "sql_plugin.h" // plugin_foreach #define window_size Log_throttle::LOG_THROTTLE_WINDOW_SIZE Error_log_throttle slave_ignored_err_throttle(window_size, sql_print_information, "Error log throttle: %lu time(s) Error_code: 1237" " \"Slave SQL thread ignored the query because of" " replicate-*-table rules\" got suppressed."); #endif /* MYSQL_CLIENT */ #include <base64.h> #include <my_bitmap.h> #include <map> #include "rpl_utility.h" /* This is necessary for the List manipuation */ #include "sql_list.h" /* I_List */ #include "hash.h" #include "sql_digest.h" #include "rpl_gtid.h" #include "xa_aux.h" PSI_memory_key key_memory_log_event; PSI_memory_key key_memory_Incident_log_event_message; PSI_memory_key key_memory_Rows_query_log_event_rows_query; using std::min; using std::max; /** BINLOG_CHECKSUM variable. */ const char *binlog_checksum_type_names[]= { "NONE", "CRC32", NullS }; unsigned int binlog_checksum_type_length[]= { sizeof("NONE") - 1, sizeof("CRC32") - 1, 0 }; TYPELIB binlog_checksum_typelib= { array_elements(binlog_checksum_type_names) - 1, "", binlog_checksum_type_names, binlog_checksum_type_length }; #define log_cs &my_charset_latin1 /* Size of buffer for printing a double in format %.<PREC>g optional '-' + optional zero + '.' + PREC digits + 'e' + sign + exponent digits + '\0' */ #define FMT_G_BUFSIZE(PREC) (3 + (PREC) + 5 + 1) #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) static int rows_event_stmt_cleanup(Relay_log_info const *rli, THD* thd); static const char *HA_ERR(int i) { /* This function should only be called in case of an error was detected */ assert(i != 0); switch (i) { case HA_ERR_KEY_NOT_FOUND: return "HA_ERR_KEY_NOT_FOUND"; case HA_ERR_FOUND_DUPP_KEY: return "HA_ERR_FOUND_DUPP_KEY"; case HA_ERR_RECORD_CHANGED: return "HA_ERR_RECORD_CHANGED"; case HA_ERR_WRONG_INDEX: return "HA_ERR_WRONG_INDEX"; case HA_ERR_CRASHED: return "HA_ERR_CRASHED"; case HA_ERR_WRONG_IN_RECORD: return "HA_ERR_WRONG_IN_RECORD"; case HA_ERR_OUT_OF_MEM: return "HA_ERR_OUT_OF_MEM"; case HA_ERR_NOT_A_TABLE: return "HA_ERR_NOT_A_TABLE"; case HA_ERR_WRONG_COMMAND: return "HA_ERR_WRONG_COMMAND"; case HA_ERR_OLD_FILE: return "HA_ERR_OLD_FILE"; case HA_ERR_NO_ACTIVE_RECORD: return "HA_ERR_NO_ACTIVE_RECORD"; case HA_ERR_RECORD_DELETED: return "HA_ERR_RECORD_DELETED"; case HA_ERR_RECORD_FILE_FULL: return "HA_ERR_RECORD_FILE_FULL"; case HA_ERR_INDEX_FILE_FULL: return "HA_ERR_INDEX_FILE_FULL"; case HA_ERR_END_OF_FILE: return "HA_ERR_END_OF_FILE"; case HA_ERR_UNSUPPORTED: return "HA_ERR_UNSUPPORTED"; case HA_ERR_TOO_BIG_ROW: return "HA_ERR_TOO_BIG_ROW"; case HA_WRONG_CREATE_OPTION: return "HA_WRONG_CREATE_OPTION"; case HA_ERR_FOUND_DUPP_UNIQUE: return "HA_ERR_FOUND_DUPP_UNIQUE"; case HA_ERR_UNKNOWN_CHARSET: return "HA_ERR_UNKNOWN_CHARSET"; case HA_ERR_WRONG_MRG_TABLE_DEF: return "HA_ERR_WRONG_MRG_TABLE_DEF"; case HA_ERR_CRASHED_ON_REPAIR: return "HA_ERR_CRASHED_ON_REPAIR"; case HA_ERR_CRASHED_ON_USAGE: return "HA_ERR_CRASHED_ON_USAGE"; case HA_ERR_LOCK_WAIT_TIMEOUT: return "HA_ERR_LOCK_WAIT_TIMEOUT"; case HA_ERR_LOCK_TABLE_FULL: return "HA_ERR_LOCK_TABLE_FULL"; case HA_ERR_READ_ONLY_TRANSACTION: return "HA_ERR_READ_ONLY_TRANSACTION"; case HA_ERR_LOCK_DEADLOCK: return "HA_ERR_LOCK_DEADLOCK"; case HA_ERR_CANNOT_ADD_FOREIGN: return "HA_ERR_CANNOT_ADD_FOREIGN"; case HA_ERR_NO_REFERENCED_ROW: return "HA_ERR_NO_REFERENCED_ROW"; case HA_ERR_ROW_IS_REFERENCED: return "HA_ERR_ROW_IS_REFERENCED"; case HA_ERR_NO_SAVEPOINT: return "HA_ERR_NO_SAVEPOINT"; case HA_ERR_NON_UNIQUE_BLOCK_SIZE: return "HA_ERR_NON_UNIQUE_BLOCK_SIZE"; case HA_ERR_NO_SUCH_TABLE: return "HA_ERR_NO_SUCH_TABLE"; case HA_ERR_TABLE_EXIST: return "HA_ERR_TABLE_EXIST"; case HA_ERR_NO_CONNECTION: return "HA_ERR_NO_CONNECTION"; case HA_ERR_NULL_IN_SPATIAL: return "HA_ERR_NULL_IN_SPATIAL"; case HA_ERR_TABLE_DEF_CHANGED: return "HA_ERR_TABLE_DEF_CHANGED"; case HA_ERR_NO_PARTITION_FOUND: return "HA_ERR_NO_PARTITION_FOUND"; case HA_ERR_RBR_LOGGING_FAILED: return "HA_ERR_RBR_LOGGING_FAILED"; case HA_ERR_DROP_INDEX_FK: return "HA_ERR_DROP_INDEX_FK"; case HA_ERR_FOREIGN_DUPLICATE_KEY: return "HA_ERR_FOREIGN_DUPLICATE_KEY"; case HA_ERR_TABLE_NEEDS_UPGRADE: return "HA_ERR_TABLE_NEEDS_UPGRADE"; case HA_ERR_TABLE_READONLY: return "HA_ERR_TABLE_READONLY"; case HA_ERR_AUTOINC_READ_FAILED: return "HA_ERR_AUTOINC_READ_FAILED"; case HA_ERR_AUTOINC_ERANGE: return "HA_ERR_AUTOINC_ERANGE"; case HA_ERR_GENERIC: return "HA_ERR_GENERIC"; case HA_ERR_RECORD_IS_THE_SAME: return "HA_ERR_RECORD_IS_THE_SAME"; case HA_ERR_LOGGING_IMPOSSIBLE: return "HA_ERR_LOGGING_IMPOSSIBLE"; case HA_ERR_CORRUPT_EVENT: return "HA_ERR_CORRUPT_EVENT"; case HA_ERR_ROWS_EVENT_APPLY : return "HA_ERR_ROWS_EVENT_APPLY"; case HA_ERR_FK_DEPTH_EXCEEDED : return "HA_ERR_FK_DEPTH_EXCEEDED"; case HA_ERR_INNODB_READ_ONLY: return "HA_ERR_INNODB_READ_ONLY"; case HA_ERR_COMPUTE_FAILED: return "HA_ERR_COMPUTE_FAILED"; case HA_ERR_FTS_TOO_MANY_NESTED_EXP: return "HA_ERR_FTS_TOO_MANY_NESTED_EXP"; } return "No Error!"; } /** Error reporting facility for Rows_log_event::do_apply_event @param level error, warning or info @param ha_error HA_ERR_ code @param rli pointer to the active Relay_log_info instance @param thd pointer to the slave thread's thd @param table pointer to the event's table object @param type the type of the event @param log_name the master binlog file name @param pos the master binlog file pos (the next after the event) */ static void inline slave_rows_error_report(enum loglevel level, int ha_error, Relay_log_info const *rli, THD *thd, TABLE *table, const char * type, const char *log_name, ulong pos) { const char *handler_error= (ha_error ? HA_ERR(ha_error) : NULL); bool is_group_replication_applier_channel= channel_map.is_group_replication_channel_name((const_cast<Relay_log_info *>(rli))->get_channel(), true); char buff[MAX_SLAVE_ERRMSG], *slider; const char *buff_end= buff + sizeof(buff); size_t len; Diagnostics_area::Sql_condition_iterator it= thd->get_stmt_da()->sql_conditions(); const Sql_condition *err; buff[0]= 0; for (err= it++, slider= buff; err && slider < buff_end - 1; slider += len, err= it++) { len= my_snprintf(slider, buff_end - slider, " %s, Error_code: %d;", err->message_text(), err->mysql_errno()); } if (is_group_replication_applier_channel) { if (ha_error != 0) { rli->report(level, thd->is_error() ? thd->get_stmt_da()->mysql_errno() : ER_UNKNOWN_ERROR, "Could not execute %s event on table %s.%s;" "%s handler error %s", type, table->s->db.str, table->s->table_name.str, buff, handler_error == NULL ? "<unknown>" : handler_error); } else { rli->report(level, thd->is_error() ? thd->get_stmt_da()->mysql_errno() : ER_UNKNOWN_ERROR, "Could not execute %s event on table %s.%s;" "%s", type, table->s->db.str, table->s->table_name.str, buff); } } else { if (ha_error != 0) { rli->report(level, thd->is_error() ? thd->get_stmt_da()->mysql_errno() : ER_UNKNOWN_ERROR, "Could not execute %s event on table %s.%s;" "%s handler error %s; " "the event's master log %s, end_log_pos %lu", type, table->s->db.str, table->s->table_name.str, buff, handler_error == NULL ? "<unknown>" : handler_error, log_name, pos); } else { rli->report(level, thd->is_error() ? thd->get_stmt_da()->mysql_errno() : ER_UNKNOWN_ERROR, "Could not execute %s event on table %s.%s;" "%s the event's master log %s, end_log_pos %lu", type, table->s->db.str, table->s->table_name.str, buff, log_name, pos); } } } static void set_thd_db(THD *thd, const char *db, size_t db_len) { char lcase_db_buf[NAME_LEN +1]; LEX_CSTRING new_db; new_db.length= db_len; if (lower_case_table_names) { my_stpcpy(lcase_db_buf, db); my_casedn_str(system_charset_info, lcase_db_buf); new_db.str= lcase_db_buf; } else new_db.str= (char*) db; new_db.str= (char*) rpl_filter->get_rewrite_db(new_db.str, &new_db.length); thd->set_db(new_db); } #endif /* pretty_print_str() */ #ifdef MYSQL_CLIENT static void pretty_print_str(IO_CACHE* cache, const char* str, size_t len) { const char* end = str + len; my_b_printf(cache, "\'"); while (str < end) { char c; switch ((c=*str++)) { case '\n': my_b_printf(cache, "\\n"); break; case '\r': my_b_printf(cache, "\\r"); break; case '\\': my_b_printf(cache, "\\\\"); break; case '\b': my_b_printf(cache, "\\b"); break; case '\t': my_b_printf(cache, "\\t"); break; case '\'': my_b_printf(cache, "\\'"); break; case 0 : my_b_printf(cache, "\\0"); break; default: my_b_printf(cache, "%c", c); break; } } my_b_printf(cache, "\'"); } #endif /* MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) static void clear_all_errors(THD *thd, Relay_log_info *rli) { thd->is_slave_error = 0; thd->clear_error(); rli->clear_error(); if (rli->workers_array_initialized) { for(size_t i= 0; i < rli->get_worker_count(); i++) { rli->get_worker(i)->clear_error(); } } } inline int idempotent_error_code(int err_code) { int ret= 0; switch (err_code) { case 0: ret= 1; break; /* The following list of "idempotent" errors means that an error from the list might happen because of idempotent (more than once) applying of a binlog file. Notice, that binlog has a ddl operation its second applying may cause case HA_ERR_TABLE_DEF_CHANGED: case HA_ERR_CANNOT_ADD_FOREIGN: which are not included into to the list. Note that HA_ERR_RECORD_DELETED is not in the list since do_exec_row() should not return that error code. */ case HA_ERR_RECORD_CHANGED: case HA_ERR_KEY_NOT_FOUND: case HA_ERR_END_OF_FILE: case HA_ERR_FOUND_DUPP_KEY: case HA_ERR_FOUND_DUPP_UNIQUE: case HA_ERR_FOREIGN_DUPLICATE_KEY: case HA_ERR_NO_REFERENCED_ROW: case HA_ERR_ROW_IS_REFERENCED: ret= 1; break; default: ret= 0; break; } return (ret); } /** Ignore error code specified on command line. */ int ignored_error_code(int err_code) { return ((err_code == ER_SLAVE_IGNORED_TABLE) || (use_slave_mask && bitmap_is_set(&slave_error_mask, err_code))); } /* This function converts an engine's error to a server error. If the thread does not have an error already reported, it tries to define it by calling the engine's method print_error. However, if a mapping is not found, it uses the ER_UNKNOWN_ERROR and prints out a warning message. */ int convert_handler_error(int error, THD* thd, TABLE *table) { uint actual_error= (thd->is_error() ? thd->get_stmt_da()->mysql_errno() : 0); if (actual_error == 0) { table->file->print_error(error, MYF(0)); actual_error= (thd->is_error() ? thd->get_stmt_da()->mysql_errno() : ER_UNKNOWN_ERROR); if (actual_error == ER_UNKNOWN_ERROR) sql_print_warning("Unknown error detected %d in handler", error); } return (actual_error); } inline bool concurrency_error_code(int error) { switch (error) { case ER_LOCK_WAIT_TIMEOUT: case ER_LOCK_DEADLOCK: case ER_XA_RBDEADLOCK: return TRUE; default: return (FALSE); } } inline bool unexpected_error_code(int unexpected_error) { switch (unexpected_error) { case ER_NET_READ_ERROR: case ER_NET_ERROR_ON_WRITE: case ER_QUERY_INTERRUPTED: case ER_SERVER_SHUTDOWN: case ER_NEW_ABORTING_CONNECTION: return(TRUE); default: return(FALSE); } } /* pretty_print_str() */ static char *pretty_print_str(char *packet, const char *str, size_t len) { const char *end= str + len; char *pos= packet; *pos++= '\''; while (str < end) { char c; switch ((c=*str++)) { case '\n': *pos++= '\\'; *pos++= 'n'; break; case '\r': *pos++= '\\'; *pos++= 'r'; break; case '\\': *pos++= '\\'; *pos++= '\\'; break; case '\b': *pos++= '\\'; *pos++= 'b'; break; case '\t': *pos++= '\\'; *pos++= 't'; break; case '\'': *pos++= '\\'; *pos++= '\''; break; case 0 : *pos++= '\\'; *pos++= '0'; break; default: *pos++= c; break; } } *pos++= '\''; return pos; } #endif /* !MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** Creates a temporary name for load data infile:. @param buf Store new filename here @param file_id File_id (part of file name) @param event_server_id Event_id (part of file name) @param ext Extension for file name @return Pointer to start of extension */ static char *slave_load_file_stem(char *buf, uint file_id, int event_server_id, const char *ext) { char *res; fn_format(buf,PREFIX_SQL_LOAD,slave_load_tmpdir, "", MY_UNPACK_FILENAME); to_unix_path(buf); buf= strend(buf); int appended_length= sprintf(buf, "%s-%d-", server_uuid, event_server_id); buf+= appended_length; res= int10_to_str(file_id, buf, 10); my_stpcpy(res, ext); // Add extension last return res; // Pointer to extension } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** Delete all temporary files used for SQL_LOAD. */ static void cleanup_load_tmpdir() { MY_DIR *dirp; FILEINFO *file; uint i; char fname[FN_REFLEN], prefbuf[TEMP_FILE_MAX_LEN], *p; if (!(dirp=my_dir(slave_load_tmpdir,MYF(0)))) return; /* When we are deleting temporary files, we should only remove the files associated with the server id of our server. We don't use event_server_id here because since we've disabled direct binlogging of Create_file/Append_file/Exec_load events we cannot meet Start_log event in the middle of events from one LOAD DATA. */ p= strmake(prefbuf, STRING_WITH_LEN(PREFIX_SQL_LOAD)); sprintf(p,"%s-",server_uuid); for (i=0 ; i < dirp->number_off_files; i++) { file=dirp->dir_entry+i; if (is_prefix(file->name, prefbuf)) { fn_format(fname,file->name,slave_load_tmpdir,"",MY_UNPACK_FILENAME); mysql_file_delete(key_file_misc, fname, MYF(0)); } } my_dirend(dirp); } #endif /* Stores string to IO_CACHE file. Writes str to file in the following format: 1. Stores length using only one byte (255 maximum value); 2. Stores complete str. */ static bool write_str_at_most_255_bytes(IO_CACHE *file, const char *str, uint length) { uchar tmp[1]; tmp[0]= (uchar) length; return (my_b_safe_write(file, tmp, sizeof(tmp)) || my_b_safe_write(file, (uchar*) str, length)); } /** Transforms a string into "" or its expression in 0x... form. */ char *str_to_hex(char *to, const char *from, size_t len) { if (len) { *to++= '0'; *to++= 'x'; to= octet2hex(to, from, len); } else to= my_stpcpy(to, "\"\""); return to; // pointer to end 0 of 'to' } #ifndef MYSQL_CLIENT /** Append a version of the 'from' string suitable for use in a query to the 'to' string. To generate a correct escaping, the character set information in 'csinfo' is used. */ int append_query_string(THD *thd, const CHARSET_INFO *csinfo, String const *from, String *to) { char *beg, *ptr; size_t const orig_len= to->length(); if (to->reserve(orig_len + from->length()*2+3)) return 1; beg= to->c_ptr_quick() + to->length(); ptr= beg; if (csinfo->escape_with_backslash_is_dangerous) ptr= str_to_hex(ptr, from->ptr(), from->length()); else { *ptr++= '\''; if (!(thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)) { ptr+= escape_string_for_mysql(csinfo, ptr, 0, from->ptr(), from->length()); } else { const char *frm_str= from->ptr(); for (; frm_str < (from->ptr() + from->length()); frm_str++) { /* Using '' way to represent "'" */ if (*frm_str == '\'') *ptr++= *frm_str; *ptr++= *frm_str; } } *ptr++= '\''; } to->length(orig_len + ptr - beg); return 0; } #endif /** Prints a "session_var=value" string. Used by mysqlbinlog to print some SET commands just before it prints a query. */ #ifdef MYSQL_CLIENT static void print_set_option(IO_CACHE* file, uint32 bits_changed, uint32 option, uint32 flags, const char* name, bool* need_comma) { if (bits_changed & option) { if (*need_comma) my_b_printf(file,", "); my_b_printf(file,"%s=%d", name, MY_TEST(flags & option)); *need_comma= 1; } } #endif /************************************************************************** Log_event methods (= the parent class of all events) **************************************************************************/ /** @return returns the human readable name of the event's type */ const char* Log_event::get_type_str(Log_event_type type) { switch(type) { case binary_log::START_EVENT_V3: return "Start_v3"; case binary_log::STOP_EVENT: return "Stop"; case binary_log::QUERY_EVENT: return "Query"; case binary_log::ROTATE_EVENT: return "Rotate"; case binary_log::INTVAR_EVENT: return "Intvar"; case binary_log::LOAD_EVENT: return "Load"; case binary_log::NEW_LOAD_EVENT: return "New_load"; case binary_log::CREATE_FILE_EVENT: return "Create_file"; case binary_log::APPEND_BLOCK_EVENT: return "Append_block"; case binary_log::DELETE_FILE_EVENT: return "Delete_file"; case binary_log::EXEC_LOAD_EVENT: return "Exec_load"; case binary_log::RAND_EVENT: return "RAND"; case binary_log::XID_EVENT: return "Xid"; case binary_log::USER_VAR_EVENT: return "User var"; case binary_log::FORMAT_DESCRIPTION_EVENT: return "Format_desc"; case binary_log::TABLE_MAP_EVENT: return "Table_map"; case binary_log::PRE_GA_WRITE_ROWS_EVENT: return "Write_rows_event_old"; case binary_log::PRE_GA_UPDATE_ROWS_EVENT: return "Update_rows_event_old"; case binary_log::PRE_GA_DELETE_ROWS_EVENT: return "Delete_rows_event_old"; case binary_log::WRITE_ROWS_EVENT_V1: return "Write_rows_v1"; case binary_log::UPDATE_ROWS_EVENT_V1: return "Update_rows_v1"; case binary_log::DELETE_ROWS_EVENT_V1: return "Delete_rows_v1"; case binary_log::BEGIN_LOAD_QUERY_EVENT: return "Begin_load_query"; case binary_log::EXECUTE_LOAD_QUERY_EVENT: return "Execute_load_query"; case binary_log::INCIDENT_EVENT: return "Incident"; case binary_log::IGNORABLE_LOG_EVENT: return "Ignorable"; case binary_log::ROWS_QUERY_LOG_EVENT: return "Rows_query"; case binary_log::WRITE_ROWS_EVENT: return "Write_rows"; case binary_log::UPDATE_ROWS_EVENT: return "Update_rows"; case binary_log::DELETE_ROWS_EVENT: return "Delete_rows"; case binary_log::GTID_LOG_EVENT: return "Gtid"; case binary_log::ANONYMOUS_GTID_LOG_EVENT: return "Anonymous_Gtid"; case binary_log::PREVIOUS_GTIDS_LOG_EVENT: return "Previous_gtids"; case binary_log::HEARTBEAT_LOG_EVENT: return "Heartbeat"; case binary_log::TRANSACTION_CONTEXT_EVENT: return "Transaction_context"; case binary_log::VIEW_CHANGE_EVENT: return "View_change"; case binary_log::XA_PREPARE_LOG_EVENT: return "XA_prepare"; default: return "Unknown"; /* impossible */ } } const char* Log_event::get_type_str() { return get_type_str(get_type_code()); } /* Log_event::Log_event() */ #ifndef MYSQL_CLIENT Log_event::Log_event(THD* thd_arg, uint16 flags_arg, enum_event_cache_type cache_type_arg, enum_event_logging_type logging_type_arg, Log_event_header *header, Log_event_footer *footer) : is_valid_param(false), temp_buf(0), exec_time(0), event_cache_type(cache_type_arg), event_logging_type(logging_type_arg), crc(0), common_header(header), common_footer(footer), thd(thd_arg) { server_id= thd->server_id; common_header->unmasked_server_id= server_id; common_header->when= thd->start_time; common_header->log_pos= 0; common_header->flags= flags_arg; } /** This minimal constructor is for when you are not even sure that there is a valid THD. For example in the server when we are shutting down or flushing logs after receiving a SIGHUP (then we must write a Rotate to the binlog but we have no THD, so we need this minimal constructor). */ Log_event::Log_event(Log_event_header* header, Log_event_footer *footer, enum_event_cache_type cache_type_arg, enum_event_logging_type logging_type_arg) : is_valid_param(false), temp_buf(0), exec_time(0), event_cache_type(cache_type_arg), event_logging_type(logging_type_arg), crc(0), common_header(header), common_footer(footer), thd(0) { server_id= ::server_id; common_header->unmasked_server_id= server_id; } #endif /* !MYSQL_CLIENT */ /* Log_event::Log_event() */ Log_event::Log_event(Log_event_header *header, Log_event_footer *footer) : is_valid_param(false), temp_buf(0), exec_time(0), event_cache_type(EVENT_INVALID_CACHE), event_logging_type(EVENT_INVALID_LOGGING), crc(0), common_header(header), common_footer(footer) { #ifndef MYSQL_CLIENT thd= 0; #endif /* Mask out any irrelevant parts of the server_id */ #ifdef HAVE_REPLICATION server_id = common_header->unmasked_server_id & opt_server_id_mask; #else server_id = common_header->unmasked_server_id; #endif } /* This method is not on header file to avoid using key_memory_log_event outside log_event.cc, allowing header file to be included on plugins. */ void* Log_event::operator new(size_t size) { return my_malloc(key_memory_log_event, size, MYF(MY_WME|MY_FAE)); } #ifndef MYSQL_CLIENT #ifdef HAVE_REPLICATION inline int Log_event::do_apply_event_worker(Slave_worker *w) { DBUG_EXECUTE_IF("crash_in_a_worker", { /* we will crash a worker after waiting for 2 seconds to make sure that other transactions are scheduled and completed */ if (w->id == 2) { DBUG_SET("-d,crash_in_a_worker"); my_sleep(2000000); DBUG_SUICIDE(); } }); return do_apply_event(w); } int Log_event::do_update_pos(Relay_log_info *rli) { int error= 0; assert(!rli->belongs_to_client()); /* rli is null when (as far as I (Guilhem) know) the caller is Load_log_event::do_apply_event *and* that one is called from Execute_load_log_event::do_apply_event. In this case, we don't do anything here ; Execute_load_log_event::do_apply_event will call Log_event::do_apply_event again later with the proper rli. Strictly speaking, if we were sure that rli is null only in the case discussed above, 'if (rli)' is useless here. But as we are not 100% sure, keep it for now. Matz: I don't think we will need this check with this refactoring. */ assert(!is_mts_worker(rli->info_thd)); if (rli) error= rli->stmt_done(common_header->log_pos); return error; } Log_event::enum_skip_reason Log_event::do_shall_skip(Relay_log_info *rli) { /* The logic for slave_skip_counter is as follows: - Events that are skipped because they have the same server_id as the slave do not decrease slave_skip_counter. - Other events (that pass the server_id test) will decrease slave_skip_counter. - Except in one case: if slave_skip_counter==1, it will only decrease to 0 if we are at a so-called group boundary. Here, a group is defined as the range of events that represent a single transaction in the relay log: see comment for is_in_group in rpl_rli.h for a definition. The difficult part to implement is the logic to avoid decreasing the counter to 0. Given that groups have the form described in is_in_group in rpl_rli.h, we implement the logic as follows: - Gtid, Rand, User_var, Int_var will never decrease the counter to 0. - BEGIN will set thd->variables.option_bits & OPTION_BEGIN and COMMIT/Xid will clear it. This happens regardless of whether the BEGIN/COMMIT/Xid is skipped itself. - Other events will decrease the counter unless OPTION_BEGIN is set. */ DBUG_PRINT("info", ("ev->server_id=%lu, ::server_id=%lu," " rli->replicate_same_server_id=%d," " rli->slave_skip_counter=%d", (ulong) server_id, (ulong) ::server_id, rli->replicate_same_server_id, rli->slave_skip_counter)); if ((server_id == ::server_id && !rli->replicate_same_server_id) || (rli->slave_skip_counter == 1 && rli->is_in_group())) return EVENT_SKIP_IGNORE; else if (rli->slave_skip_counter > 0) return EVENT_SKIP_COUNT; else return EVENT_SKIP_NOT; } /* Log_event::pack_info() */ int Log_event::pack_info(Protocol *protocol) { protocol->store("", &my_charset_bin); return 0; } /** Only called by SHOW BINLOG EVENTS */ int Log_event::net_send(Protocol *protocol, const char* log_name, my_off_t pos) { const char *p= strrchr(log_name, FN_LIBCHAR); const char *event_type; if (p) log_name = p + 1; protocol->start_row(); protocol->store(log_name, &my_charset_bin); protocol->store((ulonglong) pos); event_type = get_type_str(); protocol->store(event_type, strlen(event_type), &my_charset_bin); protocol->store((uint32) server_id); protocol->store((ulonglong) common_header->log_pos); if (pack_info(protocol)) return 1; return protocol->end_row(); } #endif /* HAVE_REPLICATION */ /** init_show_field_list() prepares the column names and types for the output of SHOW BINLOG EVENTS; it is used only by SHOW BINLOG EVENTS. */ void Log_event::init_show_field_list(List<Item>* field_list) { field_list->push_back(new Item_empty_string("Log_name", 20)); field_list->push_back(new Item_return_int("Pos", MY_INT32_NUM_DECIMAL_DIGITS, MYSQL_TYPE_LONGLONG)); field_list->push_back(new Item_empty_string("Event_type", 20)); field_list->push_back(new Item_return_int("Server_id", 10, MYSQL_TYPE_LONG)); field_list->push_back(new Item_return_int("End_log_pos", MY_INT32_NUM_DECIMAL_DIGITS, MYSQL_TYPE_LONGLONG)); field_list->push_back(new Item_empty_string("Info", 20)); } /** A decider of whether to trigger checksum computation or not. To be invoked in Log_event::write() stack. The decision is positive S,M) if it's been marked for checksumming with @c checksum_alg M) otherwise, if @@global.binlog_checksum is not NONE and the event is directly written to the binlog file. The to-be-cached event decides at @c write_cache() time. Otherwise the decision is negative. @note A side effect of the method is altering Log_event::checksum_alg it the latter was undefined at calling. @return true (positive) or false (negative) */ my_bool Log_event::need_checksum() { DBUG_ENTER("Log_event::need_checksum"); my_bool ret= FALSE; /* few callers of Log_event::write (incl FD::write, FD constructing code on the slave side, Rotate relay log and Stop event) provides their checksum alg preference through Log_event::checksum_alg. */ if (common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_UNDEF) ret= (common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_OFF); else if (binlog_checksum_options != binary_log::BINLOG_CHECKSUM_ALG_OFF && event_cache_type == Log_event::EVENT_NO_CACHE) ret= (binlog_checksum_options != 0); else ret= FALSE; /* FD calls the methods before data_written has been calculated. The following invariant claims if the current is not the first call (and therefore data_written is not zero) then `ret' must be TRUE. It may not be null because FD is always checksummed. */ assert(get_type_code() != binary_log::FORMAT_DESCRIPTION_EVENT || ret || common_header->data_written == 0); if (common_footer->checksum_alg == binary_log::BINLOG_CHECKSUM_ALG_UNDEF) common_footer->checksum_alg= ret ? // calculated value stored static_cast<enum_binlog_checksum_alg>(binlog_checksum_options) : binary_log::BINLOG_CHECKSUM_ALG_OFF; assert(!ret || ((common_footer->checksum_alg == static_cast<enum_binlog_checksum_alg>(binlog_checksum_options) || /* Stop event closes the relay-log and its checksum alg preference is set by the caller can be different from the server's binlog_checksum_options. */ get_type_code() == binary_log::STOP_EVENT || /* Rotate:s can be checksummed regardless of the server's binlog_checksum_options. That applies to both the local RL's Rotate and the master's Rotate which IO thread instantiates via queue_binlog_ver_3_event. */ get_type_code() == binary_log::ROTATE_EVENT || /* The previous event has its checksum option defined according to the format description event. */ get_type_code() == binary_log::PREVIOUS_GTIDS_LOG_EVENT || /* FD is always checksummed */ get_type_code() == binary_log::FORMAT_DESCRIPTION_EVENT) && common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_OFF)); assert(common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_UNDEF); assert(((get_type_code() != binary_log::ROTATE_EVENT && get_type_code() != binary_log::STOP_EVENT) || get_type_code() != binary_log::FORMAT_DESCRIPTION_EVENT) || event_cache_type == Log_event::EVENT_NO_CACHE); DBUG_RETURN(ret); } bool Log_event::wrapper_my_b_safe_write(IO_CACHE* file, const uchar* buf, size_t size) { DBUG_EXECUTE_IF("simulate_temp_file_write_error", { file->write_pos=file->write_end; DBUG_SET("+d,simulate_file_write_error"); }); if (need_checksum() && size != 0) crc= checksum_crc32(crc, buf, size); bool ret = my_b_safe_write(file, buf, size); DBUG_EXECUTE_IF("simulate_temp_file_write_error", { DBUG_SET("-d,simulate_file_write_error"); }); return ret; } bool Log_event::write_footer(IO_CACHE* file) { /* footer contains the checksum-algorithm descriptor followed by the checksum value */ if (need_checksum()) { uchar buf[BINLOG_CHECKSUM_LEN]; int4store(buf, crc); return (my_b_safe_write(file, (uchar*) buf, sizeof(buf))); } return 0; } uint32 Log_event::write_header_to_memory(uchar *buf) { // Query start time ulong timestamp= (ulong) get_time(); #ifndef NDEBUG if (DBUG_EVALUATE_IF("inc_event_time_by_1_hour",1,0) && DBUG_EVALUATE_IF("dec_event_time_by_1_hour",1,0)) { /** This assertion guarantees that these debug flags are not used at the same time (they would cancel each other). */ assert(0); } else { DBUG_EXECUTE_IF("inc_event_time_by_1_hour", timestamp= timestamp + 3600;); DBUG_EXECUTE_IF("dec_event_time_by_1_hour", timestamp= timestamp - 3600;); } #endif /* Header will be of size LOG_EVENT_HEADER_LEN for all events, except for FORMAT_DESCRIPTION_EVENT and ROTATE_EVENT, where it will be LOG_EVENT_MINIMAL_HEADER_LEN (remember these 2 have a frozen header, because we read them before knowing the format). */ int4store(buf, timestamp); buf[EVENT_TYPE_OFFSET]= get_type_code(); int4store(buf + SERVER_ID_OFFSET, server_id); int4store(buf + EVENT_LEN_OFFSET, static_cast<uint32>(common_header->data_written)); int4store(buf + LOG_POS_OFFSET, static_cast<uint32>(common_header->log_pos)); int2store(buf + FLAGS_OFFSET, common_header->flags); return LOG_EVENT_HEADER_LEN; } bool Log_event::write_header(IO_CACHE* file, size_t event_data_length) { uchar header[LOG_EVENT_HEADER_LEN]; bool ret; DBUG_ENTER("Log_event::write_header"); /* Store number of bytes that will be written by this event */ common_header->data_written= event_data_length + sizeof(header); if (need_checksum()) { crc= checksum_crc32(0L, NULL, 0); common_header->data_written += BINLOG_CHECKSUM_LEN; } /* log_pos != 0 if this is relay-log event. In this case we should not change the position */ if (is_artificial_event()) { /* Artificial events are automatically generated and do not exist in master's binary log, so log_pos should be set to 0. */ common_header->log_pos= 0; } else if (!common_header->log_pos) { /* Calculate position of end of event Note that with a SEQ_READ_APPEND cache, my_b_tell() does not work well. So this will give slightly wrong positions for the Format_desc/Rotate/Stop events which the slave writes to its relay log. For example, the initial Format_desc will have end_log_pos=91 instead of 95. Because after writing the first 4 bytes of the relay log, my_b_tell() still reports 0. Because my_b_append() does not update the counter which my_b_tell() later uses (one should probably use my_b_append_tell() to work around this). To get right positions even when writing to the relay log, we use the (new) my_b_safe_tell(). Note that this raises a question on the correctness of all these assert(my_b_tell()=rli->event_relay_log_pos). If in a transaction, the log_pos which we calculate below is not very good (because then my_b_safe_tell() returns start position of the BEGIN, so it's like the statement was at the BEGIN's place), but it's not a very serious problem (as the slave, when it is in a transaction, does not take those end_log_pos into account (as it calls inc_event_relay_log_pos()). To be fixed later, so that it looks less strange. But not bug. */ common_header->log_pos= my_b_safe_tell(file) + common_header->data_written; } write_header_to_memory(header); ret= my_b_safe_write(file, header, LOG_EVENT_HEADER_LEN); /* Update the checksum. In case this is a Format_description_log_event, we need to clear the LOG_EVENT_BINLOG_IN_USE_F flag before computing the checksum, since the flag will be cleared when the binlog is closed. On verification, the flag is dropped before computing the checksum too. */ if (need_checksum() && (common_header->flags & LOG_EVENT_BINLOG_IN_USE_F) != 0) { common_header->flags &= ~LOG_EVENT_BINLOG_IN_USE_F; int2store(header + FLAGS_OFFSET, common_header->flags); } crc= my_checksum(crc, header, LOG_EVENT_HEADER_LEN); DBUG_RETURN( ret); } /** This needn't be format-tolerant, because we only read LOG_EVENT_MINIMAL_HEADER_LEN (we just want to read the event's length). The caller should allocate the packet buffer before calling this function. */ int Log_event::read_log_event(IO_CACHE* file, String* packet, mysql_mutex_t* log_lock, enum_binlog_checksum_alg checksum_alg_arg, const char *log_file_name_arg, bool* is_binlog_active, char *event_header) { ulong data_len; int result=0; char local_buf[LOG_EVENT_MINIMAL_HEADER_LEN]; char *buf= event_header != NULL ? event_header : local_buf; uchar ev_offset= packet->length(); DBUG_ENTER("Log_event::read_log_event(IO_CACHE *, String *, mysql_mutex_t, uint8)"); if (log_lock) mysql_mutex_lock(log_lock); if (log_file_name_arg) *is_binlog_active= mysql_bin_log.is_active(log_file_name_arg); /* If the event header wasn't passed, we need to read it. */ if (buf == local_buf) { if (my_b_read(file, (uchar*) buf, LOG_EVENT_MINIMAL_HEADER_LEN)) { /* If the read hits eof, we must report it as eof so the caller will know it can go into cond_wait to be woken up on the next update to the log. */ DBUG_PRINT("error",("my_b_read failed. file->error: %d", file->error)); if (!file->error) result= LOG_READ_EOF; else result= (file->error > 0 ? LOG_READ_TRUNC : LOG_READ_IO); goto end; } } else DBUG_PRINT("info",("Skipped reading the event header. Using the provided one.")); data_len= uint4korr(buf + EVENT_LEN_OFFSET); if (data_len < LOG_EVENT_MINIMAL_HEADER_LEN || data_len > max(current_thd->variables.max_allowed_packet, opt_binlog_rows_event_max_size + MAX_LOG_EVENT_HEADER)) { DBUG_PRINT("error",("data_len is out of bounds. data_len: %lu", data_len)); result= ((data_len < LOG_EVENT_MINIMAL_HEADER_LEN) ? LOG_READ_BOGUS : LOG_READ_TOO_LARGE); goto end; } /* If the event header wasn't passed, the caller doesn't know the event size yet, so the packet size may not have enough space to load the entire event. We need to adjust the packet size here since the call to my_b_read() below expects the buffer to be allocated. */ if (buf == local_buf) { ulong new_alloc_len= packet->length() + data_len; if (new_alloc_len > packet->alloced_length() && packet->mem_realloc(new_alloc_len)) { /* Failed to allocate packet */ result= LOG_READ_MEM; goto end; } } /* Check packet buffer size and append the log event header to it */ if (packet->alloced_length() - packet->length() < data_len || packet->append(buf, LOG_EVENT_MINIMAL_HEADER_LEN)) { DBUG_PRINT("info", ("first packet->append failed (out of memory)")); /* Failed to allocate packet */ result= LOG_READ_MEM; goto end; } data_len-= LOG_EVENT_MINIMAL_HEADER_LEN; if (data_len) { /* Append rest of event, read directly from file into packet. We are avoiding to call packet->append(IO_CACHE, size_t) at this point because the String::append logic will call String::mem_realloc() that might resize the buffer (changing its pointer) in order to reserve a space for a trailing '\0' that we don't need. */ char *event_data_buffer= const_cast<char*>(packet->ptr() + packet->length()); result= my_b_read(file, reinterpret_cast<uchar*>(event_data_buffer), data_len); if (result) { /* Fatal error occured when appending rest of the event to packet, possible failures: 1. EOF occured when reading from file, it's really an error as data_len is >=0 there's supposed to be more bytes available. file->error will have been set to number of bytes left to read 2. Read was interrupted, file->error would normally be set to -1 3. Failed to allocate memory for packet, my_errno will be ENOMEM(file->error shuold be 0, but since the memory allocation occurs before the call to read it might be uninitialized) */ DBUG_PRINT("info", ("second packet->append failed (out of memory)")); result= (my_errno() == ENOMEM ? LOG_READ_MEM : (file->error >= 0 ? LOG_READ_TRUNC: LOG_READ_IO)); goto end; } else { packet->length(packet->length() + data_len); /* Corrupt the event for Dump thread. We also need to exclude Previous_gtids_log_event and Gtid_log_event events from injected corruption to allow dump thread to move forward on binary log until the missing transactions from slave when MASTER_AUTO_POSITION= 1. */ DBUG_EXECUTE_IF("corrupt_read_log_event", uchar *debug_event_buf_c = (uchar*) packet->ptr() + ev_offset; if (debug_event_buf_c[EVENT_TYPE_OFFSET] != binary_log::FORMAT_DESCRIPTION_EVENT && debug_event_buf_c[EVENT_TYPE_OFFSET] != binary_log::PREVIOUS_GTIDS_LOG_EVENT && debug_event_buf_c[EVENT_TYPE_OFFSET] != binary_log::GTID_LOG_EVENT) { int debug_cor_pos = rand() % (data_len + LOG_EVENT_MINIMAL_HEADER_LEN - BINLOG_CHECKSUM_LEN); debug_event_buf_c[debug_cor_pos] =~ debug_event_buf_c[debug_cor_pos]; DBUG_PRINT("info", ("Corrupt the event at Log_event::read_log_event: byte on position %d", debug_cor_pos)); } ); /* CRC verification of the Dump thread */ binary_log_debug::debug_checksum_test= DBUG_EVALUATE_IF("simulate_checksum_test_failure", true, false); if (opt_master_verify_checksum && Log_event_footer::event_checksum_test((uchar*)packet->ptr() + ev_offset, data_len + LOG_EVENT_MINIMAL_HEADER_LEN, checksum_alg_arg)) { DBUG_PRINT("info", ("checksum test failed")); result= LOG_READ_CHECKSUM_FAILURE; goto end; } } } end: if (log_lock) mysql_mutex_unlock(log_lock); DBUG_PRINT("info", ("read_log_event returns %d", result)); DBUG_RETURN(result); } #endif /* !MYSQL_CLIENT */ #ifndef MYSQL_CLIENT #define UNLOCK_MUTEX if (log_lock) mysql_mutex_unlock(log_lock); #define LOCK_MUTEX if (log_lock) mysql_mutex_lock(log_lock); #else #define UNLOCK_MUTEX #define LOCK_MUTEX #endif #ifndef MYSQL_CLIENT /** @note Allocates memory; The caller is responsible for clean-up. */ Log_event* Log_event::read_log_event(IO_CACHE* file, mysql_mutex_t* log_lock, const Format_description_log_event *description_event, my_bool crc_check) #else Log_event* Log_event::read_log_event(IO_CACHE* file, const Format_description_log_event *description_event, my_bool crc_check, read_log_event_filter_function f) #endif { DBUG_ENTER("Log_event::read_log_event(IO_CACHE *[, mysql_mutex_t *], Format_description_log_event *, my_bool)"); assert(description_event != 0); char head[LOG_EVENT_MINIMAL_HEADER_LEN]; /* First we only want to read at most LOG_EVENT_MINIMAL_HEADER_LEN, just to check the event for sanity and to know its length; no need to really parse it. We say "at most" because this could be a 3.23 master, which has header of 13 bytes, whereas LOG_EVENT_MINIMAL_HEADER_LEN is 19 bytes (it's "minimal" over the set {MySQL >=4.0}). */ uint header_size= min<uint>(description_event->common_header_len, LOG_EVENT_MINIMAL_HEADER_LEN); LOCK_MUTEX; DBUG_PRINT("info", ("my_b_tell: %lu", (ulong) my_b_tell(file))); if (my_b_read(file, (uchar *) head, header_size)) { DBUG_PRINT("info", ("Log_event::read_log_event(IO_CACHE*,Format_desc*) " "failed in my_b_read((IO_CACHE*)%p, (uchar*)%p, %u)", file, head, header_size)); UNLOCK_MUTEX; /* No error here; it could be that we are at the file's end. However if the next my_b_read() fails (below), it will be an error as we were able to read the first bytes. */ DBUG_RETURN(0); } ulong data_len = uint4korr(head + EVENT_LEN_OFFSET); char *buf= 0; const char *error= 0; Log_event *res= 0; #if !defined(MYSQL_SERVER) && !defined(EMBEDDED_LIBRARY) ulong log_max_allowed_packet = 0; mysql_get_option(NULL, MYSQL_OPT_MAX_ALLOWED_PACKET, &log_max_allowed_packet); #else THD *thd=current_thd; uint log_max_allowed_packet= thd ? slave_max_allowed_packet : ~0U; #endif ulong const max_size= max<ulong>(log_max_allowed_packet, opt_binlog_rows_event_max_size + MAX_LOG_EVENT_HEADER); if (data_len > max_size) { error = "Event too big"; goto err; } if (data_len < header_size) { error = "Event too small"; goto err; } // some events use the extra byte to null-terminate strings if (!(buf = (char*) my_malloc(key_memory_log_event, data_len+1, MYF(MY_WME)))) { error = "Out of memory"; goto err; } buf[data_len] = 0; memcpy(buf, head, header_size); if (my_b_read(file, (uchar*) buf + header_size, data_len - header_size)) { error = "read error"; goto err; } #if defined(MYSQL_CLIENT) if (f && f(&buf, &data_len, description_event)) { error = "Error applying filter while reading event"; goto err; } #endif if ((res= read_log_event(buf, data_len, &error, description_event, crc_check))) res->register_temp_buf(buf); err: UNLOCK_MUTEX; if (!res) { assert(error != 0); sql_print_error("Error in Log_event::read_log_event(): " "'%s', data_len: %lu, event_type: %d", error,data_len,head[EVENT_TYPE_OFFSET]); my_free(buf); /* The SQL slave thread will check if file->error<0 to know if there was an I/O error. Even if there is no "low-level" I/O errors with 'file', any of the high-level above errors is worrying enough to stop the SQL thread now ; as we are skipping the current event, going on with reading and successfully executing other events can only corrupt the slave's databases. So stop. The file->error is also checked to record the position of the last valid event when master server recovers. */ file->error= -1; } DBUG_RETURN(res); } /** Binlog format tolerance is in (buf, event_len, description_event) constructors. */ Log_event* Log_event::read_log_event(const char* buf, uint event_len, const char **error, const Format_description_log_event *description_event, my_bool crc_check) { Log_event* ev= NULL; enum_binlog_checksum_alg alg; DBUG_ENTER("Log_event::read_log_event(char *, uint, char **, Format_description_log_event *, my_bool)"); assert(description_event != 0); DBUG_PRINT("info", ("binlog_version: %d", description_event->binlog_version)); DBUG_DUMP("data", (unsigned char*) buf, event_len); /* Check the integrity */ if (event_len < EVENT_LEN_OFFSET || event_len != uint4korr(buf+EVENT_LEN_OFFSET)) { DBUG_PRINT("error", ("event_len=%u EVENT_LEN_OFFSET=%d " "buf[EVENT_TYPE_OFFSET]=%d ENUM_END_EVENT=%d " "uint4korr(buf+EVENT_LEN_OFFSET)=%d", event_len, EVENT_LEN_OFFSET, buf[EVENT_TYPE_OFFSET], binary_log::ENUM_END_EVENT, uint4korr(buf+EVENT_LEN_OFFSET))); *error="Sanity check failed"; // Needed to free buffer DBUG_RETURN(NULL); // general sanity check - will fail on a partial read } uint event_type= buf[EVENT_TYPE_OFFSET]; // all following START events in the current file are without checksum if (event_type == binary_log::START_EVENT_V3) (const_cast< Format_description_log_event *>(description_event))-> common_footer->checksum_alg= binary_log::BINLOG_CHECKSUM_ALG_OFF; // Sanity check for Format description event if (event_type == binary_log::FORMAT_DESCRIPTION_EVENT) { if (event_len < LOG_EVENT_MINIMAL_HEADER_LEN + ST_COMMON_HEADER_LEN_OFFSET) { *error= "Found invalid Format description event in binary log"; DBUG_RETURN(0); } uint tmp_header_len= buf[LOG_EVENT_MINIMAL_HEADER_LEN + ST_COMMON_HEADER_LEN_OFFSET]; if (event_len < tmp_header_len + ST_SERVER_VER_OFFSET + ST_SERVER_VER_LEN) { *error= "Found invalid Format description event in binary log"; DBUG_RETURN(0); } } /* CRC verification by SQL and Show-Binlog-Events master side. The caller has to provide @description_event->checksum_alg to be the last seen FD's (A) descriptor. If event is FD the descriptor is in it. Notice, FD of the binlog can be only in one instance and therefore Show-Binlog-Events executing master side thread needs just to know the only FD's (A) value - whereas RL can contain more. In the RL case, the alg is kept in FD_e (@description_event) which is reset to the newer read-out event after its execution with possibly new alg descriptor. Therefore in a typical sequence of RL: {FD_s^0, FD_m, E_m^1} E_m^1 will be verified with (A) of FD_m. See legends definition on MYSQL_BIN_LOG::relay_log_checksum_alg docs lines (log.h). Notice, a pre-checksum FD version forces alg := BINLOG_CHECKSUM_ALG_UNDEF. */ alg= (event_type != binary_log::FORMAT_DESCRIPTION_EVENT) ? description_event->common_footer->checksum_alg : Log_event_footer::get_checksum_alg(buf, event_len); // Emulate the corruption during reading an event DBUG_EXECUTE_IF("corrupt_read_log_event_char", if (event_type != binary_log::FORMAT_DESCRIPTION_EVENT) { char *debug_event_buf_c = (char *)buf; int debug_cor_pos = rand() % (event_len - BINLOG_CHECKSUM_LEN); debug_event_buf_c[debug_cor_pos] =~ debug_event_buf_c[debug_cor_pos]; DBUG_PRINT("info", ("Corrupt the event at Log_event::read_log_event(char*,...): byte on position %d", debug_cor_pos)); DBUG_SET(""); } ); #ifndef NDEBUG binary_log_debug::debug_checksum_test= DBUG_EVALUATE_IF("simulate_checksum_test_failure", true, false); #endif if (crc_check && Log_event_footer::event_checksum_test((uchar *) buf, event_len, alg) && /* Skip the crc check when simulating an unknown ignorable log event. */ !DBUG_EVALUATE_IF("simulate_unknown_ignorable_log_event", 1, 0)) { *error= "Event crc check failed! Most likely there is event corruption."; #ifdef MYSQL_CLIENT if (force_opt) { ev= new Unknown_log_event(buf, description_event); DBUG_RETURN(ev); } #endif DBUG_RETURN(NULL); } if (event_type > description_event->number_of_event_types && event_type != binary_log::FORMAT_DESCRIPTION_EVENT && /* Skip the event type check when simulating an unknown ignorable log event. */ !DBUG_EVALUATE_IF("simulate_unknown_ignorable_log_event", 1, 0)) { /* It is unsafe to use the description_event if its post_header_len array does not include the event type. */ DBUG_PRINT("error", ("event type %d found, but the current " "Format_description_log_event supports only %d event " "types", event_type, description_event->number_of_event_types)); ev= NULL; } else { /* In some previuos versions (see comment in Format_description_log_event::Format_description_log_event(char*,...)), event types were assigned different id numbers than in the present version. In order to replicate from such versions to the present version, we must map those event type id's to our event type id's. The mapping is done with the event_type_permutation array, which was set up when the Format_description_log_event was read. */ if (description_event->event_type_permutation) { uint new_event_type; if (event_type >= EVENT_TYPE_PERMUTATION_NUM) /* Safe guard for read out of bounds of event_type_permutation. */ new_event_type= binary_log::UNKNOWN_EVENT; else new_event_type= description_event->event_type_permutation[event_type]; DBUG_PRINT("info", ("converting event type %d to %d (%s)", event_type, new_event_type, get_type_str((Log_event_type)new_event_type))); event_type= new_event_type; } if (alg != binary_log::BINLOG_CHECKSUM_ALG_UNDEF && (event_type == binary_log::FORMAT_DESCRIPTION_EVENT || alg != binary_log::BINLOG_CHECKSUM_ALG_OFF)) event_len= event_len - BINLOG_CHECKSUM_LEN; switch(event_type) { case binary_log::QUERY_EVENT: #ifndef NDEBUG binary_log_debug::debug_query_mts_corrupt_db_names= DBUG_EVALUATE_IF("query_log_event_mts_corrupt_db_names", true, false); #endif ev = new Query_log_event(buf, event_len, description_event, binary_log::QUERY_EVENT); break; case binary_log::LOAD_EVENT: case binary_log::NEW_LOAD_EVENT: #ifndef NDEBUG binary_log_debug::debug_simulate_invalid_address= DBUG_EVALUATE_IF("simulate_invalid_address", true, false); #endif ev = new Load_log_event(buf, event_len, description_event); break; case binary_log::ROTATE_EVENT: ev = new Rotate_log_event(buf, event_len, description_event); break; case binary_log::CREATE_FILE_EVENT: #ifndef NDEBUG binary_log_debug::debug_simulate_invalid_address= DBUG_EVALUATE_IF("simulate_invalid_address", true, false); #endif ev = new Create_file_log_event(buf, event_len, description_event); break; case binary_log::APPEND_BLOCK_EVENT: ev = new Append_block_log_event(buf, event_len, description_event); break; case binary_log::DELETE_FILE_EVENT: ev = new Delete_file_log_event(buf, event_len, description_event); break; case binary_log::EXEC_LOAD_EVENT: ev = new Execute_load_log_event(buf, event_len, description_event); break; case binary_log::START_EVENT_V3: /* this is sent only by MySQL <=4.x */ ev = new Start_log_event_v3(buf, event_len, description_event); break; case binary_log::STOP_EVENT: ev = new Stop_log_event(buf, description_event); break; case binary_log::INTVAR_EVENT: ev = new Intvar_log_event(buf, description_event); break; case binary_log::XID_EVENT: ev = new Xid_log_event(buf, description_event); break; case binary_log::RAND_EVENT: ev = new Rand_log_event(buf, description_event); break; case binary_log::USER_VAR_EVENT: ev = new User_var_log_event(buf, event_len, description_event); break; case binary_log::FORMAT_DESCRIPTION_EVENT: ev = new Format_description_log_event(buf, event_len, description_event); break; #if defined(HAVE_REPLICATION) case binary_log::PRE_GA_WRITE_ROWS_EVENT: ev = new Write_rows_log_event_old(buf, event_len, description_event); break; case binary_log::PRE_GA_UPDATE_ROWS_EVENT: ev = new Update_rows_log_event_old(buf, event_len, description_event); break; case binary_log::PRE_GA_DELETE_ROWS_EVENT: ev = new Delete_rows_log_event_old(buf, event_len, description_event); break; case binary_log::WRITE_ROWS_EVENT_V1: if (!(description_event->post_header_len.empty())) ev = new Write_rows_log_event(buf, event_len, description_event); break; case binary_log::UPDATE_ROWS_EVENT_V1: if (!(description_event->post_header_len.empty())) ev = new Update_rows_log_event(buf, event_len, description_event); break; case binary_log::DELETE_ROWS_EVENT_V1: if (!(description_event->post_header_len.empty())) ev = new Delete_rows_log_event(buf, event_len, description_event); break; case binary_log::TABLE_MAP_EVENT: if (!(description_event->post_header_len.empty())) ev = new Table_map_log_event(buf, event_len, description_event); break; #endif case binary_log::BEGIN_LOAD_QUERY_EVENT: ev = new Begin_load_query_log_event(buf, event_len, description_event); break; case binary_log::EXECUTE_LOAD_QUERY_EVENT: ev= new Execute_load_query_log_event(buf, event_len, description_event); break; case binary_log::INCIDENT_EVENT: ev = new Incident_log_event(buf, event_len, description_event); break; case binary_log::ROWS_QUERY_LOG_EVENT: ev= new Rows_query_log_event(buf, event_len, description_event); break; case binary_log::GTID_LOG_EVENT: case binary_log::ANONYMOUS_GTID_LOG_EVENT: ev= new Gtid_log_event(buf, event_len, description_event); break; case binary_log::PREVIOUS_GTIDS_LOG_EVENT: ev= new Previous_gtids_log_event(buf, event_len, description_event); break; #if defined(HAVE_REPLICATION) case binary_log::WRITE_ROWS_EVENT: ev = new Write_rows_log_event(buf, event_len, description_event); break; case binary_log::UPDATE_ROWS_EVENT: ev = new Update_rows_log_event(buf, event_len, description_event); break; case binary_log::DELETE_ROWS_EVENT: ev = new Delete_rows_log_event(buf, event_len, description_event); break; case binary_log::TRANSACTION_CONTEXT_EVENT: ev = new Transaction_context_log_event(buf, event_len, description_event); break; case binary_log::VIEW_CHANGE_EVENT: ev = new View_change_log_event(buf, event_len, description_event); break; #endif case binary_log::XA_PREPARE_LOG_EVENT: ev= new XA_prepare_log_event(buf, description_event); break; default: /* Create an object of Ignorable_log_event for unrecognized sub-class. So that SLAVE SQL THREAD will only update the position and continue. */ if (uint2korr(buf + FLAGS_OFFSET) & LOG_EVENT_IGNORABLE_F) { ev= new Ignorable_log_event(buf, description_event); } else { DBUG_PRINT("error",("Unknown event code: %d", (int) buf[EVENT_TYPE_OFFSET])); ev= NULL; } break; } } if (ev) { ev->common_footer->checksum_alg= alg; if (ev->common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_OFF && ev->common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_UNDEF) ev->crc= uint4korr(buf + (event_len)); } DBUG_PRINT("read_event", ("%s(type_code: %d; event_len: %d)", ev ? ev->get_type_str() : "<unknown>", buf[EVENT_TYPE_OFFSET], event_len)); /* is_valid is used for small event-specific sanity tests which are important; for example there are some my_malloc() in constructors (e.g. Query_log_event::Query_log_event(char*...)); when these my_malloc() fail we can't return an error out of the constructor (because constructor is "void") ; so instead we leave the pointer we wanted to allocate (e.g. 'query') to 0 and we test it and set the value of is_valid to true or false based on the test. Same for Format_description_log_event, member 'post_header_len'. SLAVE_EVENT is never used, so it should not be read ever. */ if (!ev || !ev->is_valid() || (event_type == binary_log::SLAVE_EVENT)) { DBUG_PRINT("error",("Found invalid event in binary log")); delete ev; #ifdef MYSQL_CLIENT if (!force_opt) /* then mysqlbinlog dies */ { *error= "Found invalid event in binary log"; DBUG_RETURN(0); } ev= new Unknown_log_event(buf, description_event); #else *error= "Found invalid event in binary log"; DBUG_RETURN(0); #endif } DBUG_RETURN(ev); } #ifdef MYSQL_CLIENT /* Log_event::print_header() */ void Log_event::print_header(IO_CACHE* file, PRINT_EVENT_INFO* print_event_info, bool is_more MY_ATTRIBUTE((unused))) { char llbuff[22]; my_off_t hexdump_from= print_event_info->hexdump_from; DBUG_ENTER("Log_event::print_header"); my_b_printf(file, "#"); print_timestamp(file, NULL); my_b_printf(file, " server id %lu end_log_pos %s ", (ulong) server_id, llstr(common_header->log_pos,llbuff)); /* print the checksum */ if (common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_OFF && common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_UNDEF) { char checksum_buf[BINLOG_CHECKSUM_LEN * 2 + 4]; // to fit to "0x%lx " size_t const bytes_written= my_snprintf(checksum_buf, sizeof(checksum_buf), "0x%08lx ", (ulong) crc); my_b_printf(file, "%s ", get_type(&binlog_checksum_typelib, common_footer->checksum_alg)); my_b_printf(file, checksum_buf, bytes_written); } /* mysqlbinlog --hexdump */ if (print_event_info->hexdump_from) { my_b_printf(file, "\n"); uchar *ptr= (uchar*)temp_buf; my_off_t size= uint4korr(ptr + EVENT_LEN_OFFSET) - LOG_EVENT_MINIMAL_HEADER_LEN; my_off_t i; /* Header len * 4 >= header len * (2 chars + space + extra space) */ char *h, hex_string[49]= {0}; char *c, char_string[16+1]= {0}; /* Pretty-print event common header if header is exactly 19 bytes */ if (print_event_info->common_header_len == LOG_EVENT_MINIMAL_HEADER_LEN) { char emit_buf[256]; // Enough for storing one line my_b_printf(file, "# Position Timestamp Type Master ID " "Size Master Pos Flags \n"); size_t const bytes_written= my_snprintf(emit_buf, sizeof(emit_buf), "# %8.8lx %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x\n", (unsigned long) hexdump_from, ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], ptr[10], ptr[11], ptr[12], ptr[13], ptr[14], ptr[15], ptr[16], ptr[17], ptr[18]); assert(static_cast<size_t>(bytes_written) < sizeof(emit_buf)); my_b_write(file, (uchar*) emit_buf, bytes_written); ptr += LOG_EVENT_MINIMAL_HEADER_LEN; hexdump_from += LOG_EVENT_MINIMAL_HEADER_LEN; } /* Rest of event (without common header) */ for (i= 0, c= char_string, h=hex_string; i < size; i++, ptr++) { my_snprintf(h, 4, (i % 16 <= 7) ? "%02x " : " %02x", *ptr); h += 3; *c++= my_isalnum(&my_charset_bin, *ptr) ? *ptr : '.'; if (i % 16 == 15) { /* my_b_printf() does not support full printf() formats, so we have to do it this way. TODO: Rewrite my_b_printf() to support full printf() syntax. */ char emit_buf[256]; size_t const bytes_written= my_snprintf(emit_buf, sizeof(emit_buf), "# %8.8lx %-48.48s |%16s|\n", (unsigned long) (hexdump_from + (i & 0xfffffff0)), hex_string, char_string); assert(static_cast<size_t>(bytes_written) < sizeof(emit_buf)); my_b_write(file, (uchar*) emit_buf, bytes_written); hex_string[0]= 0; char_string[0]= 0; c= char_string; h= hex_string; } } *c= '\0'; assert(hex_string[48] == 0); if (hex_string[0]) { char emit_buf[256]; // Right-pad hex_string with spaces, up to 48 characters. memset(h, ' ', (sizeof(hex_string) -1) - (h - hex_string)); size_t const bytes_written= my_snprintf(emit_buf, sizeof(emit_buf), "# %8.8lx %-48.48s |%s|\n", (unsigned long) (hexdump_from + (i & 0xfffffff0)), hex_string, char_string); assert(static_cast<size_t>(bytes_written) < sizeof(emit_buf)); my_b_write(file, (uchar*) emit_buf, bytes_written); } /* need a # to prefix the rest of printouts for example those of Rows_log_event::print_helper(). */ my_b_write(file, reinterpret_cast<const uchar*>("# "), 2); } DBUG_VOID_RETURN; } /** Prints a quoted string to io cache. Control characters are displayed as hex sequence, e.g. \x00 @param[in] file IO cache @param[in] prt Pointer to string @param[in] length String length */ static void my_b_write_quoted(IO_CACHE *file, const uchar *ptr, uint length) { const uchar *s; my_b_printf(file, "'"); for (s= ptr; length > 0 ; s++, length--) { if (*s > 0x1F && *s != '\'' && *s != '\\') my_b_write(file, s, 1); else { uchar hex[10]; size_t len= my_snprintf((char*) hex, sizeof(hex), "%s%02x", "\\x", *s); my_b_write(file, hex, len); } } my_b_printf(file, "'"); } /** Prints a bit string to io cache in format b'1010'. @param[in] file IO cache @param[in] ptr Pointer to string @param[in] nbits Number of bits */ static void my_b_write_bit(IO_CACHE *file, const uchar *ptr, uint nbits) { uint bitnum, nbits8= ((nbits + 7) / 8) * 8, skip_bits= nbits8 - nbits; my_b_printf(file, "b'"); for (bitnum= skip_bits ; bitnum < nbits8; bitnum++) { int is_set= (ptr[(bitnum) / 8] >> (7 - bitnum % 8)) & 0x01; my_b_write(file, (const uchar*) (is_set ? "1" : "0"), 1); } my_b_printf(file, "'"); } /** Prints a packed string to io cache. The string consists of length packed to 1 or 2 bytes, followed by string data itself. @param[in] file IO cache @param[in] ptr Pointer to string @param[in] length String size @retval - number of bytes scanned. */ static size_t my_b_write_quoted_with_length(IO_CACHE *file, const uchar *ptr, uint length) { if (length < 256) { length= *ptr; my_b_write_quoted(file, ptr + 1, length); return length + 1; } else { length= uint2korr(ptr); my_b_write_quoted(file, ptr + 2, length); return length + 2; } } /** Prints a 32-bit number in both signed and unsigned representation @param[in] file IO cache @param[in] sl Signed number @param[in] ul Unsigned number */ static void my_b_write_sint32_and_uint32(IO_CACHE *file, int32 si, uint32 ui) { my_b_printf(file, "%d", si); if (si < 0) my_b_printf(file, " (%u)", ui); } /** Print a packed value of the given SQL type into IO cache @param[in] file IO cache @param[in] ptr Pointer to string @param[in] type Column type @param[in] meta Column meta information @param[out] typestr SQL type string buffer (for verbose output) @param[out] typestr_length Size of typestr @retval - number of bytes scanned from ptr. */ static size_t log_event_print_value(IO_CACHE *file, const uchar *ptr, uint type, uint meta, char *typestr, size_t typestr_length) { uint32 length= 0; if (type == MYSQL_TYPE_STRING) { if (meta >= 256) { uint byte0= meta >> 8; uint byte1= meta & 0xFF; if ((byte0 & 0x30) != 0x30) { /* a long CHAR() field: see #37426 */ length= byte1 | (((byte0 & 0x30) ^ 0x30) << 4); type= byte0 | 0x30; } else length = meta & 0xFF; } else length= meta; } switch (type) { case MYSQL_TYPE_LONG: { my_snprintf(typestr, typestr_length, "INT"); if(!ptr) return my_b_printf(file, "NULL"); int32 si= sint4korr(ptr); uint32 ui= uint4korr(ptr); my_b_write_sint32_and_uint32(file, si, ui); return 4; } case MYSQL_TYPE_TINY: { my_snprintf(typestr, typestr_length, "TINYINT"); if(!ptr) return my_b_printf(file, "NULL"); my_b_write_sint32_and_uint32(file, (int) (signed char) *ptr, (uint) (unsigned char) *ptr); return 1; } case MYSQL_TYPE_SHORT: { my_snprintf(typestr, typestr_length, "SHORTINT"); if(!ptr) return my_b_printf(file, "NULL"); int32 si= (int32) sint2korr(ptr); uint32 ui= (uint32) uint2korr(ptr); my_b_write_sint32_and_uint32(file, si, ui); return 2; } case MYSQL_TYPE_INT24: { my_snprintf(typestr, typestr_length, "MEDIUMINT"); if(!ptr) return my_b_printf(file, "NULL"); int32 si= sint3korr(ptr); uint32 ui= uint3korr(ptr); my_b_write_sint32_and_uint32(file, si, ui); return 3; } case MYSQL_TYPE_LONGLONG: { my_snprintf(typestr, typestr_length, "LONGINT"); if(!ptr) return my_b_printf(file, "NULL"); char tmp[64]; longlong si= sint8korr(ptr); longlong10_to_str(si, tmp, -10); my_b_printf(file, "%s", tmp); if (si < 0) { ulonglong ui= uint8korr(ptr); longlong10_to_str((longlong) ui, tmp, 10); my_b_printf(file, " (%s)", tmp); } return 8; } case MYSQL_TYPE_NEWDECIMAL: { uint precision= meta >> 8; uint decimals= meta & 0xFF; my_snprintf(typestr, typestr_length, "DECIMAL(%d,%d)", precision, decimals); if(!ptr) return my_b_printf(file, "NULL"); uint bin_size= my_decimal_get_binary_size(precision, decimals); my_decimal dec; binary2my_decimal(E_DEC_FATAL_ERROR, (uchar*) ptr, &dec, precision, decimals); int len= DECIMAL_MAX_STR_LENGTH; char buff[DECIMAL_MAX_STR_LENGTH + 1]; decimal2string(&dec,buff,&len, 0, 0, 0); my_b_printf(file, "%s", buff); return bin_size; } case MYSQL_TYPE_FLOAT: { my_snprintf(typestr, typestr_length, "FLOAT"); if(!ptr) return my_b_printf(file, "NULL"); float fl; float4get(&fl, ptr); char tmp[320]; sprintf(tmp, "%-20g", (double) fl); my_b_printf(file, "%s", tmp); /* my_snprintf doesn't support %-20g */ return 4; } case MYSQL_TYPE_DOUBLE: { strcpy(typestr, "DOUBLE"); if(!ptr) return my_b_printf(file, "NULL"); double dbl; float8get(&dbl, ptr); char tmp[320]; sprintf(tmp, "%-.20g", dbl); /* my_snprintf doesn't support %-20g */ my_b_printf(file, "%s", tmp); return 8; } case MYSQL_TYPE_BIT: { /* Meta-data: bit_len, bytes_in_rec, 2 bytes */ uint nbits= ((meta >> 8) * 8) + (meta & 0xFF); my_snprintf(typestr, typestr_length, "BIT(%d)", nbits); if(!ptr) return my_b_printf(file, "NULL"); length= (nbits + 7) / 8; my_b_write_bit(file, ptr, nbits); return length; } case MYSQL_TYPE_TIMESTAMP: { my_snprintf(typestr, typestr_length, "TIMESTAMP"); if(!ptr) return my_b_printf(file, "NULL"); uint32 i32= uint4korr(ptr); my_b_printf(file, "%d", i32); return 4; } case MYSQL_TYPE_TIMESTAMP2: { my_snprintf(typestr, typestr_length, "TIMESTAMP(%d)", meta); if(!ptr) return my_b_printf(file, "NULL"); char buf[MAX_DATE_STRING_REP_LENGTH]; struct timeval tm; my_timestamp_from_binary(&tm, ptr, meta); int buflen= my_timeval_to_str(&tm, buf, meta); my_b_write(file, buf, buflen); return my_timestamp_binary_length(meta); } case MYSQL_TYPE_DATETIME: { my_snprintf(typestr, typestr_length, "DATETIME"); if(!ptr) return my_b_printf(file, "NULL"); size_t d, t; uint64 i64= uint8korr(ptr); /* YYYYMMDDhhmmss */ d= static_cast<size_t>(i64 / 1000000); t= i64 % 1000000; my_b_printf(file, "%04d-%02d-%02d %02d:%02d:%02d", static_cast<int>(d / 10000), static_cast<int>(d % 10000) / 100, static_cast<int>(d % 100), static_cast<int>(t / 10000), static_cast<int>(t % 10000) / 100, static_cast<int>(t % 100)); return 8; } case MYSQL_TYPE_DATETIME2: { my_snprintf(typestr, typestr_length, "DATETIME(%d)", meta); if(!ptr) return my_b_printf(file, "NULL"); char buf[MAX_DATE_STRING_REP_LENGTH]; MYSQL_TIME ltime; longlong packed= my_datetime_packed_from_binary(ptr, meta); TIME_from_longlong_datetime_packed(<ime, packed); int buflen= my_datetime_to_str(<ime, buf, meta); my_b_write_quoted(file, (uchar *) buf, buflen); return my_datetime_binary_length(meta); } case MYSQL_TYPE_TIME: { my_snprintf(typestr, typestr_length, "TIME"); if(!ptr) return my_b_printf(file, "NULL"); uint32 i32= uint3korr(ptr); my_b_printf(file, "'%02d:%02d:%02d'", i32 / 10000, (i32 % 10000) / 100, i32 % 100); return 3; } case MYSQL_TYPE_TIME2: { my_snprintf(typestr, typestr_length, "TIME(%d)", meta); if(!ptr) return my_b_printf(file, "NULL"); char buf[MAX_DATE_STRING_REP_LENGTH]; MYSQL_TIME ltime; longlong packed= my_time_packed_from_binary(ptr, meta); TIME_from_longlong_time_packed(<ime, packed); int buflen= my_time_to_str(<ime, buf, meta); my_b_write_quoted(file, (uchar *) buf, buflen); return my_time_binary_length(meta); } case MYSQL_TYPE_NEWDATE: { my_snprintf(typestr, typestr_length, "DATE"); if(!ptr) return my_b_printf(file, "NULL"); uint32 tmp= uint3korr(ptr); int part; char buf[11]; char *pos= &buf[10]; // start from '\0' to the beginning /* Copied from field.cc */ *pos--=0; // End NULL part=(int) (tmp & 31); *pos--= (char) ('0'+part%10); *pos--= (char) ('0'+part/10); *pos--= ':'; part=(int) (tmp >> 5 & 15); *pos--= (char) ('0'+part%10); *pos--= (char) ('0'+part/10); *pos--= ':'; part=(int) (tmp >> 9); *pos--= (char) ('0'+part%10); part/=10; *pos--= (char) ('0'+part%10); part/=10; *pos--= (char) ('0'+part%10); part/=10; *pos= (char) ('0'+part); my_b_printf(file , "'%s'", buf); return 3; } case MYSQL_TYPE_YEAR: { my_snprintf(typestr, typestr_length, "YEAR"); if(!ptr) return my_b_printf(file, "NULL"); uint32 i32= *ptr; my_b_printf(file, "%04d", i32+ 1900); return 1; } case MYSQL_TYPE_ENUM: switch (meta & 0xFF) { case 1: my_snprintf(typestr, typestr_length, "ENUM(1 byte)"); if(!ptr) return my_b_printf(file, "NULL"); my_b_printf(file, "%d", (int) *ptr); return 1; case 2: { my_snprintf(typestr, typestr_length, "ENUM(2 bytes)"); if(!ptr) return my_b_printf(file, "NULL"); int32 i32= uint2korr(ptr); my_b_printf(file, "%d", i32); return 2; } default: my_b_printf(file, "!! Unknown ENUM packlen=%d", meta & 0xFF); return 0; } break; case MYSQL_TYPE_SET: my_snprintf(typestr, typestr_length, "SET(%d bytes)", meta & 0xFF); if(!ptr) return my_b_printf(file, "NULL"); my_b_write_bit(file, ptr , (meta & 0xFF) * 8); return meta & 0xFF; case MYSQL_TYPE_BLOB: switch (meta) { case 1: my_snprintf(typestr, typestr_length, "TINYBLOB/TINYTEXT"); if(!ptr) return my_b_printf(file, "NULL"); length= *ptr; my_b_write_quoted(file, ptr + 1, length); return length + 1; case 2: my_snprintf(typestr, typestr_length, "BLOB/TEXT"); if(!ptr) return my_b_printf(file, "NULL"); length= uint2korr(ptr); my_b_write_quoted(file, ptr + 2, length); return length + 2; case 3: my_snprintf(typestr, typestr_length, "MEDIUMBLOB/MEDIUMTEXT"); if(!ptr) return my_b_printf(file, "NULL"); length= uint3korr(ptr); my_b_write_quoted(file, ptr + 3, length); return length + 3; case 4: my_snprintf(typestr, typestr_length, "LONGBLOB/LONGTEXT"); if(!ptr) return my_b_printf(file, "NULL"); length= uint4korr(ptr); my_b_write_quoted(file, ptr + 4, length); return length + 4; default: my_b_printf(file, "!! Unknown BLOB packlen=%d", length); return 0; } case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_VAR_STRING: length= meta; my_snprintf(typestr, typestr_length, "VARSTRING(%d)", length); if(!ptr) return my_b_printf(file, "NULL"); return my_b_write_quoted_with_length(file, ptr, length); case MYSQL_TYPE_STRING: my_snprintf(typestr, typestr_length, "STRING(%d)", length); if(!ptr) return my_b_printf(file, "NULL"); return my_b_write_quoted_with_length(file, ptr, length); case MYSQL_TYPE_JSON: my_snprintf(typestr, typestr_length, "JSON"); if (!ptr) return my_b_printf(file, "NULL"); length= uint2korr(ptr); my_b_write_quoted(file, ptr + meta, length); return length + meta; default: { char tmp[5]; my_snprintf(tmp, sizeof(tmp), "%04x", meta); my_b_printf(file, "!! Don't know how to handle column type=%d meta=%d (%s)", type, meta, tmp); } break; } *typestr= 0; return 0; } /** Print a packed row into IO cache @param[in] file IO cache @param[in] td Table definition @param[in] print_event_into Print parameters @param[in] cols_bitmap Column bitmaps. @param[in] value Pointer to packed row @param[in] prefix Row's SQL clause ("SET", "WHERE", etc) @retval - number of bytes scanned. */ size_t Rows_log_event::print_verbose_one_row(IO_CACHE *file, table_def *td, PRINT_EVENT_INFO *print_event_info, MY_BITMAP *cols_bitmap, const uchar *value, const uchar *prefix) { const uchar *value0= value; const uchar *null_bits= value; uint null_bit_index= 0; char typestr[64]= ""; /* Skip metadata bytes which gives the information about nullabity of master columns. Master writes one bit for each affected column. */ value+= (bitmap_bits_set(cols_bitmap) + 7) / 8; my_b_printf(file, "%s", prefix); for (size_t i= 0; i < td->size(); i ++) { int is_null= (null_bits[null_bit_index / 8] >> (null_bit_index % 8)) & 0x01; if (bitmap_is_set(cols_bitmap, i) == 0) continue; my_b_printf(file, "### @%d=", static_cast<int>(i + 1)); if (!is_null) { size_t fsize= td->calc_field_size((uint)i, (uchar*) value); if (value + fsize > m_rows_end) { my_b_printf(file, "***Corrupted replication event was detected." " Not printing the value***\n"); value+= fsize; return 0; } } size_t size= log_event_print_value(file,is_null? NULL: value, td->type(i), td->field_metadata(i), typestr, sizeof(typestr)); if (!size) return 0; if(!is_null) value+= size; if (print_event_info->verbose > 1) { my_b_printf(file, " /* "); my_b_printf(file, "%s ", typestr); my_b_printf(file, "meta=%d nullable=%d is_null=%d ", td->field_metadata(i), td->maybe_null(i), is_null); my_b_printf(file, "*/"); } my_b_printf(file, "\n"); null_bit_index++; } return value - value0; } /** Print a row event into IO cache in human readable form (in SQL format) @param[in] file IO cache @param[in] print_event_into Print parameters */ void Rows_log_event::print_verbose(IO_CACHE *file, PRINT_EVENT_INFO *print_event_info) { // Quoted length of the identifier can be twice the original length char quoted_db[1 + NAME_LEN * 2 + 2]; char quoted_table[1 + NAME_LEN * 2 + 2]; size_t quoted_db_len, quoted_table_len; Table_map_log_event *map; table_def *td; const char *sql_command, *sql_clause1, *sql_clause2; Log_event_type general_type_code= get_general_type_code(); if (m_extra_row_data) { uint8 extra_data_len= m_extra_row_data[EXTRA_ROW_INFO_LEN_OFFSET]; uint8 extra_payload_len= extra_data_len - EXTRA_ROW_INFO_HDR_BYTES; assert(extra_data_len >= EXTRA_ROW_INFO_HDR_BYTES); my_b_printf(file, "### Extra row data format: %u, len: %u :", m_extra_row_data[EXTRA_ROW_INFO_FORMAT_OFFSET], extra_payload_len); if (extra_payload_len) { /* Buffer for hex view of string, including '0x' prefix, 2 hex chars / byte and trailing 0 */ const int buff_len= 2 + (256 * 2) + 1; char buff[buff_len]; str_to_hex(buff, (const char*) &m_extra_row_data[EXTRA_ROW_INFO_HDR_BYTES], extra_payload_len); my_b_printf(file, "%s", buff); } my_b_printf(file, "\n"); } switch (general_type_code) { case binary_log::WRITE_ROWS_EVENT: sql_command= "INSERT INTO"; sql_clause1= "### SET\n"; sql_clause2= NULL; break; case binary_log::DELETE_ROWS_EVENT: sql_command= "DELETE FROM"; sql_clause1= "### WHERE\n"; sql_clause2= NULL; break; case binary_log::UPDATE_ROWS_EVENT: sql_command= "UPDATE"; sql_clause1= "### WHERE\n"; sql_clause2= "### SET\n"; break; default: sql_command= sql_clause1= sql_clause2= NULL; assert(0); /* Not possible */ } if (!(map= print_event_info->m_table_map.get_table(m_table_id)) || !(td= map->create_table_def())) { char llbuff[22]; my_b_printf(file, "### Row event for unknown table #%s", llstr(m_table_id, llbuff)); return; } /* If the write rows event contained no values for the AI */ if (((general_type_code == binary_log::WRITE_ROWS_EVENT) && (m_rows_buf==m_rows_end))) { my_b_printf(file, "### INSERT INTO `%s`.`%s` VALUES ()\n", map->get_db_name(), map->get_table_name()); goto end; } for (const uchar *value= m_rows_buf; value < m_rows_end; ) { size_t length; #ifdef MYSQL_SERVER quoted_db_len= my_strmov_quoted_identifier(this->thd, (char *) quoted_db, map->get_db_name(), 0); quoted_table_len= my_strmov_quoted_identifier(this->thd, (char *) quoted_table, map->get_table_name(), 0); #else quoted_db_len= my_strmov_quoted_identifier((char *) quoted_db, map->get_db_name()); quoted_table_len= my_strmov_quoted_identifier((char *) quoted_table, map->get_table_name()); #endif quoted_db[quoted_db_len]= '\0'; quoted_table[quoted_table_len]= '\0'; my_b_printf(file, "### %s %s.%s\n", sql_command, quoted_db, quoted_table); /* Print the first image */ if (!(length= print_verbose_one_row(file, td, print_event_info, &m_cols, value, (const uchar*) sql_clause1))) goto end; value+= length; /* Print the second image (for UPDATE only) */ if (sql_clause2) { if (!(length= print_verbose_one_row(file, td, print_event_info, &m_cols_ai, value, (const uchar*) sql_clause2))) goto end; value+= length; } } end: delete td; } #ifdef MYSQL_CLIENT void free_table_map_log_event(Table_map_log_event *event) { delete event; } #endif void Log_event::print_base64(IO_CACHE* file, PRINT_EVENT_INFO* print_event_info, bool more) { const uchar *ptr= (const uchar *)temp_buf; uint32 size= uint4korr(ptr + EVENT_LEN_OFFSET); DBUG_ENTER("Log_event::print_base64"); uint64 const tmp_str_sz= base64_needed_encoded_length((uint64) size); char *const tmp_str= (char *) my_malloc(key_memory_log_event, tmp_str_sz, MYF(MY_WME)); if (!tmp_str) { fprintf(stderr, "\nError: Out of memory. " "Could not print correct binlog event.\n"); DBUG_VOID_RETURN; } if (base64_encode(ptr, (size_t) size, tmp_str)) { assert(0); } if (print_event_info->base64_output_mode != BASE64_OUTPUT_DECODE_ROWS) { if (my_b_tell(file) == 0) my_b_printf(file, "\nBINLOG '\n"); my_b_printf(file, "%s\n", tmp_str); if (!more) my_b_printf(file, "'%s\n", print_event_info->delimiter); } if (print_event_info->verbose) { Rows_log_event *ev= NULL; Log_event_type et= (Log_event_type) ptr[EVENT_TYPE_OFFSET]; if (common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_UNDEF && common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_OFF) size-= BINLOG_CHECKSUM_LEN; // checksum is displayed through the header const Format_description_event fd_evt= Format_description_event(glob_description_event->binlog_version, server_version); switch(et) { case binary_log::TABLE_MAP_EVENT: { Table_map_log_event *map; map= new Table_map_log_event((const char*) ptr, size, &fd_evt); print_event_info->m_table_map.set_table(map->get_table_id(), map); break; } case binary_log::WRITE_ROWS_EVENT: case binary_log::WRITE_ROWS_EVENT_V1: { ev= new Write_rows_log_event((const char*) ptr, size, &fd_evt); break; } case binary_log::DELETE_ROWS_EVENT: case binary_log::DELETE_ROWS_EVENT_V1: { ev= new Delete_rows_log_event((const char*) ptr, size, &fd_evt); break; } case binary_log::UPDATE_ROWS_EVENT: case binary_log::UPDATE_ROWS_EVENT_V1: { ev= new Update_rows_log_event((const char*) ptr, size, &fd_evt); break; } default: break; } if (ev) { ev->print_verbose(&print_event_info->footer_cache, print_event_info); delete ev; } } my_free(tmp_str); DBUG_VOID_RETURN; } /* Log_event::print_timestamp() */ void Log_event::print_timestamp(IO_CACHE* file, time_t *ts) { struct tm *res; /* In some Windows versions timeval.tv_sec is defined as "long", not as "time_t" and can be of a different size. Let's use a temporary time_t variable to execute localtime() with a correct argument type. */ time_t ts_tmp= ts ? *ts : (ulong)common_header->when.tv_sec; DBUG_ENTER("Log_event::print_timestamp"); struct tm tm_tmp; localtime_r(&ts_tmp, (res= &tm_tmp)); my_b_printf(file,"%02d%02d%02d %2d:%02d:%02d", res->tm_year % 100, res->tm_mon+1, res->tm_mday, res->tm_hour, res->tm_min, res->tm_sec); DBUG_VOID_RETURN; } #endif /* MYSQL_CLIENT */ #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) inline Log_event::enum_skip_reason Log_event::continue_group(Relay_log_info *rli) { if (rli->slave_skip_counter == 1) return Log_event::EVENT_SKIP_IGNORE; return Log_event::do_shall_skip(rli); } /** @param end_group_sets_max_dbs when true the group terminal event can carry partition info, see a note below. @return true in cases the current event carries partition data, false otherwise @note Some events combination may force to adjust partition info. In particular BEGIN, BEGIN_LOAD_QUERY_EVENT, COMMIT where none of the events holds partitioning data causes the sequential applying of the group through assigning OVER_MAX_DBS_IN_EVENT_MTS to mts_accessed_dbs of the group terminator (e.g COMMIT query) event. */ bool Log_event::contains_partition_info(bool end_group_sets_max_dbs) { bool res; switch (get_type_code()) { case binary_log::TABLE_MAP_EVENT: case binary_log::EXECUTE_LOAD_QUERY_EVENT: res= true; break; case binary_log::QUERY_EVENT: { Query_log_event *qev= static_cast<Query_log_event*>(this); if ((ends_group() && end_group_sets_max_dbs) || (qev->is_query_prefix_match(STRING_WITH_LEN("XA COMMIT")) || qev->is_query_prefix_match(STRING_WITH_LEN("XA ROLLBACK")))) { res= true; qev->mts_accessed_dbs= OVER_MAX_DBS_IN_EVENT_MTS; } else res= (!ends_group() && !starts_group()) ? true : false; break; } default: res= false; } return res; } /* SYNOPSIS This function assigns a parent ID to the job group being scheduled in parallel. It also checks if we can schedule the new event in parallel with the previous ones being executed. @param ev log event that has to be scheduled next. @param rli Pointer to coordinato's relay log info. @return true if error false otherwise */ bool schedule_next_event(Log_event* ev, Relay_log_info* rli) { int error; // Check if we can schedule this event error= rli->current_mts_submode->schedule_next_event(rli, ev); switch (error) { case ER_MTS_CANT_PARALLEL: char llbuff[22]; llstr(rli->get_event_relay_log_pos(), llbuff); my_error(ER_MTS_CANT_PARALLEL, MYF(0), ev->get_type_str(), rli->get_event_relay_log_name(), llbuff, "The master event is logically timestamped incorrectly."); return true; case ER_MTS_INCONSISTENT_DATA: /* Don't have to do anything. */ return true; case -1: /* Unable to schedule: wait_for_last_committed_trx has failed */ return true; default: return false; } /* Keep compiler happy */ return false; } /** The method maps the event to a Worker and return a pointer to it. Sending the event to the Worker is done by the caller. Irrespective of the type of Group marking (DB partioned or BGC) the following holds true: - recognize the beginning of a group to allocate the group descriptor and queue it; - associate an event with a Worker (which also handles possible conflicts detection and waiting for their termination); - finalize the group assignement when the group closing event is met. When parallelization mode is BGC-based the partitioning info in the event is simply ignored. Thereby association with a Worker does not require Assigned Partition Hash of the partitioned method. This method is not interested in all the taxonomy of the event group property, what we care about is the boundaries of the group. As a part of the group, an event belongs to one of the following types: B - beginning of a group of events (BEGIN query_log_event) g - mini-group representative event containing the partition info (any Table_map, a Query_log_event) p - a mini-group internal event that *p*receeding its g-parent (int_, rand_, user_ var:s) r - a mini-group internal "regular" event that follows its g-parent (Delete, Update, Write -rows) T - terminator of the group (XID, COMMIT, ROLLBACK, auto-commit query) Only the first g-event computes the assigned Worker which once is determined remains to be for the rest of the group. That is the g-event solely carries partitioning info. For B-event the assigned Worker is NULL to indicate Coordinator has not yet decided. The same applies to p-event. Notice, these is a special group consisting of optionally multiple p-events terminating with a g-event. Such case is caused by old master binlog and a few corner-cases of the current master version (todo: to fix). In case of the event accesses more than OVER_MAX_DBS the method has to ensure sure previously assigned groups to all other workers are done. @note The function updates GAQ queue directly, updates APH hash plus relocates some temporary tables from Coordinator's list into involved entries of APH through @c map_db_to_worker. There's few memory allocations commented where to be freed. @return a pointer to the Worker struct or NULL. */ Slave_worker *Log_event::get_slave_worker(Relay_log_info *rli) { Slave_job_group group= Slave_job_group(), *ptr_group= NULL; bool is_s_event; Slave_worker *ret_worker= NULL; char llbuff[22]; Slave_committed_queue *gaq= rli->gaq; DBUG_ENTER("Log_event::get_slave_worker"); /* checking partioning properties and perform corresponding actions */ // Beginning of a group designated explicitly with BEGIN or GTID if ((is_s_event= starts_group()) || is_gtid_event(this) || // or DDL:s or autocommit queries possibly associated with own p-events (!rli->curr_group_seen_begin && !rli->curr_group_seen_gtid && /* the following is a special case of B-free still multi-event group like { p_1,p_2,...,p_k, g }. In that case either GAQ is empty (the very first group is being assigned) or the last assigned group index points at one of mapped-to-a-worker. */ (gaq->empty() || gaq->get_job_group(rli->gaq->assigned_group_index)-> worker_id != MTS_WORKER_UNDEF))) { if (!rli->curr_group_seen_gtid && !rli->curr_group_seen_begin) { rli->mts_groups_assigned++; rli->curr_group_isolated= FALSE; group.reset(common_header->log_pos, rli->mts_groups_assigned); // the last occupied GAQ's array index gaq->assigned_group_index= gaq->en_queue(&group); DBUG_PRINT("info",("gaq_idx= %ld gaq->size=%ld", gaq->assigned_group_index, gaq->size)); assert(gaq->assigned_group_index != MTS_WORKER_UNDEF); assert(gaq->assigned_group_index < gaq->size); assert(gaq->get_job_group(rli->gaq->assigned_group_index)-> group_relay_log_name == NULL); assert(rli->last_assigned_worker == NULL || !is_mts_db_partitioned(rli)); if (is_s_event || is_gtid_event(this)) { Slave_job_item job_item= {this, rli->get_event_relay_log_number(), rli->get_event_start_pos()}; // B-event is appended to the Deferred Array associated with GCAP rli->curr_group_da.push_back(job_item); assert(rli->curr_group_da.size() == 1); if (starts_group()) { // mark the current group as started with explicit B-event rli->mts_end_group_sets_max_dbs= true; rli->curr_group_seen_begin= true; } if (is_gtid_event(this)) // mark the current group as started with explicit Gtid-event rli->curr_group_seen_gtid= true; if (schedule_next_event(this, rli)) { rli->abort_slave= 1; DBUG_RETURN(NULL); } DBUG_RETURN(ret_worker); } } else { /* The block is a result of not making GTID event as group starter. TODO: Make GITD event as B-event that is starts_group() to return true. */ Slave_job_item job_item= {this, rli->get_event_relay_log_number(), rli->get_event_relay_log_pos()}; // B-event is appended to the Deferred Array associated with GCAP rli->curr_group_da.push_back(job_item); rli->curr_group_seen_begin= true; rli->mts_end_group_sets_max_dbs= true; if (!rli->curr_group_seen_gtid && schedule_next_event(this, rli)) { rli->abort_slave= 1; DBUG_RETURN(NULL); } assert(rli->curr_group_da.size() == 2); assert(starts_group()); DBUG_RETURN (ret_worker); } if (schedule_next_event(this, rli)) { rli->abort_slave= 1; DBUG_RETURN(NULL); } } ptr_group= gaq->get_job_group(rli->gaq->assigned_group_index); if (!is_mts_db_partitioned(rli)) { /* Get least occupied worker */ ret_worker= rli->current_mts_submode->get_least_occupied_worker(rli, &rli->workers, this); if (ret_worker == NULL) { /* get_least_occupied_worker may return NULL if the thread is killed */ Slave_job_item job_item= {this, rli->get_event_relay_log_number(), rli->get_event_start_pos()}; rli->curr_group_da.push_back(job_item); assert(thd->killed); DBUG_RETURN(NULL); } ptr_group->worker_id= ret_worker->id; } else if (contains_partition_info(rli->mts_end_group_sets_max_dbs)) { int i= 0; Mts_db_names mts_dbs; get_mts_dbs(&mts_dbs); /* Bug 12982188 - MTS: SBR ABORTS WITH ERROR 1742 ON LOAD DATA Logging on master can create a group with no events holding the partition info. The following assert proves there's the only reason for such group. */ #ifndef NDEBUG { bool empty_group_with_gtids= rli->curr_group_seen_begin && rli->curr_group_seen_gtid && ends_group(); bool begin_load_query_event= ((rli->curr_group_da.size() == 3 && rli->curr_group_seen_gtid) || (rli->curr_group_da.size() == 2 && !rli->curr_group_seen_gtid)) && (rli->curr_group_da.back().data-> get_type_code() == binary_log::BEGIN_LOAD_QUERY_EVENT); bool delete_file_event= ((rli->curr_group_da.size() == 4 && rli->curr_group_seen_gtid) || (rli->curr_group_da.size() == 3 && !rli->curr_group_seen_gtid)) && (rli->curr_group_da.back().data-> get_type_code() == binary_log::DELETE_FILE_EVENT); assert((!ends_group() || (get_type_code() == binary_log::QUERY_EVENT && static_cast<Query_log_event*>(this)-> is_query_prefix_match(STRING_WITH_LEN("XA ROLLBACK")))) || empty_group_with_gtids || (rli->mts_end_group_sets_max_dbs && (begin_load_query_event || delete_file_event))); } #endif // partioning info is found which drops the flag rli->mts_end_group_sets_max_dbs= false; ret_worker= rli->last_assigned_worker; if (mts_dbs.num == OVER_MAX_DBS_IN_EVENT_MTS) { // Worker with id 0 to handle serial execution if (!ret_worker) ret_worker= rli->workers.at(0); // No need to know a possible error out of synchronization call. (void) rli->current_mts_submode-> wait_for_workers_to_finish(rli, ret_worker); /* this marking is transferred further into T-event of the current group. */ rli->curr_group_isolated= TRUE; } /* One run of the loop in the case of over-max-db:s */ for (i= 0; i < ((mts_dbs.num != OVER_MAX_DBS_IN_EVENT_MTS) ? mts_dbs.num : 1); i++) { /* The over max db:s case handled through passing to map_db_to_worker such "all" db as encoded as the "" empty string. Note, the empty string is allocated in a large buffer to satisfy hashcmp() implementation. */ const char all_db[NAME_LEN]= {0}; if (!(ret_worker= map_db_to_worker(mts_dbs.num == OVER_MAX_DBS_IN_EVENT_MTS ? all_db : mts_dbs.name[i], rli, &mts_assigned_partitions[i], /* todo: optimize it. Although pure rows- event load in insensetive to the flag value */ TRUE, ret_worker))) { llstr(rli->get_event_relay_log_pos(), llbuff); my_error(ER_MTS_CANT_PARALLEL, MYF(0), get_type_str(), rli->get_event_relay_log_name(), llbuff, "could not distribute the event to a Worker"); DBUG_RETURN(ret_worker); } // all temporary tables are transferred from Coordinator in over-max case assert(mts_dbs.num != OVER_MAX_DBS_IN_EVENT_MTS || !thd->temporary_tables); assert(!strcmp(mts_assigned_partitions[i]->db, mts_dbs.num != OVER_MAX_DBS_IN_EVENT_MTS ? mts_dbs.name[i] : all_db)); assert(ret_worker == mts_assigned_partitions[i]->worker); assert(mts_assigned_partitions[i]->usage >= 0); } if ((ptr_group= gaq->get_job_group(rli->gaq->assigned_group_index))-> worker_id == MTS_WORKER_UNDEF) { ptr_group->worker_id= ret_worker->id; assert(ptr_group->group_relay_log_name == NULL); } assert(i == mts_dbs.num || mts_dbs.num == OVER_MAX_DBS_IN_EVENT_MTS); } else { // a mini-group internal "regular" event if (rli->last_assigned_worker) { ret_worker= rli->last_assigned_worker; assert(rli->curr_group_assigned_parts.size() > 0 || ret_worker->id == 0); } else // int_, rand_, user_ var:s, load-data events { if (!(get_type_code() == binary_log::INTVAR_EVENT || get_type_code() == binary_log::RAND_EVENT || get_type_code() == binary_log::USER_VAR_EVENT || get_type_code() == binary_log::BEGIN_LOAD_QUERY_EVENT || get_type_code() == binary_log::APPEND_BLOCK_EVENT || get_type_code() == binary_log::DELETE_FILE_EVENT || is_ignorable_event())) { assert(!ret_worker); llstr(rli->get_event_relay_log_pos(), llbuff); my_error(ER_MTS_CANT_PARALLEL, MYF(0), get_type_str(), rli->get_event_relay_log_name(), llbuff, "the event is a part of a group that is unsupported in " "the parallel execution mode"); DBUG_RETURN(ret_worker); } /* In the logical clock scheduler any internal gets scheduled directly. That is Int_var, @User_var and Rand bypass the deferred array. Their association with relay-log physical coordinates is provided by the same mechanism that applies to a regular event. */ Slave_job_item job_item= {this, rli->get_event_relay_log_number(), rli->get_event_start_pos()}; rli->curr_group_da.push_back(job_item); assert(!ret_worker); DBUG_RETURN (ret_worker); } } assert(ret_worker); // T-event: Commit, Xid, a DDL query or dml query of B-less group.4 /* Preparing event physical coordinates info for Worker before any event got scheduled so when Worker error-stopped at the first event it would be aware of where exactly in the event stream. */ if (!ret_worker->master_log_change_notified) { if (!ptr_group) ptr_group= gaq->get_job_group(rli->gaq->assigned_group_index); ptr_group->group_master_log_name= my_strdup(key_memory_log_event, rli->get_group_master_log_name(), MYF(MY_WME)); ret_worker->master_log_change_notified= true; assert(!ptr_group->notified); #ifndef NDEBUG ptr_group->notified= true; #endif } /* Notify the worker about new FD */ if (!ret_worker->fd_change_notified) { if (!ptr_group) ptr_group= gaq->get_job_group(rli->gaq->assigned_group_index); /* Increment the usage counter on behalf of Worker. This avoids inadvertent FD deletion in a race case where Coordinator would install a next new FD before Worker has noticed the previous one. */ rli->get_rli_description_event()->usage_counter.atomic_add(1); ptr_group->new_fd_event= rli->get_rli_description_event(); ret_worker->fd_change_notified= true; } if (ends_group() || (!rli->curr_group_seen_begin && (get_type_code() == binary_log::QUERY_EVENT || /* When applying an old binary log without Gtid_log_event and Anonymous_gtid_log_event, the logic of multi-threaded slave still need to require that an event (for example, Query_log_event, User_var_log_event, Intvar_log_event, and Rand_log_event) that appeared outside of BEGIN...COMMIT was treated as a transaction of its own. This was just a technicality in the code and did not cause a problem, since the event and the following Query_log_event would both be assigned to dedicated worker 0. */ !rli->curr_group_seen_gtid))) { rli->mts_group_status= Relay_log_info::MTS_END_GROUP; if (rli->curr_group_isolated) set_mts_isolate_group(); if (!ptr_group) ptr_group= gaq->get_job_group(rli->gaq->assigned_group_index); assert(ret_worker != NULL); /* The following two blocks are executed if the worker has not been notified about new relay-log or a new checkpoints. Relay-log string is freed by Coordinator, Worker deallocates strings in the checkpoint block. However if the worker exits earlier reclaiming for both happens anyway at GAQ delete. */ if (!ret_worker->relay_log_change_notified) { /* Prior this event, C rotated the relay log to drop each Worker's notified flag. Now group terminating event initiates the new relay-log (where the current event is from) name delivery to Worker that will receive it in commit_positions(). */ assert(ptr_group->group_relay_log_name == NULL); ptr_group->group_relay_log_name= (char *) my_malloc(key_memory_log_event, strlen(rli-> get_group_relay_log_name()) + 1, MYF(MY_WME)); strcpy(ptr_group->group_relay_log_name, rli->get_event_relay_log_name()); assert(ptr_group->group_relay_log_name != NULL); ret_worker->relay_log_change_notified= TRUE; } if (!ret_worker->checkpoint_notified) { if (!ptr_group) ptr_group= gaq->get_job_group(rli->gaq->assigned_group_index); ptr_group->checkpoint_log_name= my_strdup(key_memory_log_event, rli->get_group_master_log_name(), MYF(MY_WME)); ptr_group->checkpoint_log_pos= rli->get_group_master_log_pos(); ptr_group->checkpoint_relay_log_name= my_strdup(key_memory_log_event, rli->get_group_relay_log_name(), MYF(MY_WME)); ptr_group->checkpoint_relay_log_pos= rli->get_group_relay_log_pos(); ptr_group->shifted= ret_worker->bitmap_shifted; ret_worker->bitmap_shifted= 0; ret_worker->checkpoint_notified= TRUE; } ptr_group->checkpoint_seqno= rli->checkpoint_seqno; ptr_group->ts= common_header->when.tv_sec + (time_t) exec_time; // Seconds_behind_master related rli->checkpoint_seqno++; /* Coordinator should not use the main memroot however its not reset elsewhere either, so let's do it safe way. The main mem root is also reset by the SQL thread in at the end of applying which Coordinator does not do in this case. That concludes the memroot reset can't harm anything in SQL thread roles after Coordinator has finished its current scheduling. */ free_root(thd->mem_root,MYF(MY_KEEP_PREALLOC)); #ifndef NDEBUG w_rr++; #endif } DBUG_RETURN (ret_worker); } int Log_event::apply_gtid_event(Relay_log_info *rli) { DBUG_ENTER("LOG_EVENT:apply_gtid_event"); int error= 0; if (rli->curr_group_da.size() < 1) DBUG_RETURN(1); Log_event* ev= rli->curr_group_da[0].data; assert(ev->get_type_code() == binary_log::GTID_LOG_EVENT || ev->get_type_code() == binary_log::ANONYMOUS_GTID_LOG_EVENT); error= ev->do_apply_event(rli); /* Clean up */ delete ev; rli->curr_group_da.clear(); rli->curr_group_seen_gtid= false; /* Removes the job from the (G)lobal (A)ssigned (Q)ueue after applying it. */ assert(rli->gaq->len > 0); Slave_job_group g= Slave_job_group(); rli->gaq->de_tail(&g); /* The rli->mts_groups_assigned is increased when adding the slave job generated for the gtid into the (G)lobal (A)ssigned (Q)ueue. So we decrease it here. */ rli->mts_groups_assigned--; DBUG_RETURN(error); } /** Scheduling event to execute in parallel or execute it directly. In MTS case the event gets associated with either Coordinator or a Worker. A special case of the association is NULL when the Worker can't be decided yet. In the single threaded sequential mode the event maps to SQL thread rli. @note in case of MTS failure Coordinator destroys all gathered deferred events. @return 0 as success, otherwise a failure. */ int Log_event::apply_event(Relay_log_info *rli) { DBUG_ENTER("LOG_EVENT:apply_event"); DBUG_PRINT("info", ("event_type=%s", get_type_str())); bool parallel= FALSE; enum enum_mts_event_exec_mode actual_exec_mode= EVENT_EXEC_PARALLEL; THD *rli_thd= rli->info_thd; worker= rli; if (rli->is_mts_recovery()) { bool skip= bitmap_is_set(&rli->recovery_groups, rli->mts_recovery_index) && (get_mts_execution_mode(::server_id, rli->mts_group_status == Relay_log_info::MTS_IN_GROUP, rli->current_mts_submode->get_type() == MTS_PARALLEL_TYPE_DB_NAME) == EVENT_EXEC_PARALLEL); if (skip) { DBUG_RETURN(0); } else { DBUG_RETURN(do_apply_event(rli)); } } if (!(parallel= rli->is_parallel_exec()) || ((actual_exec_mode= get_mts_execution_mode(::server_id, rli->mts_group_status == Relay_log_info::MTS_IN_GROUP, rli->current_mts_submode->get_type() == MTS_PARALLEL_TYPE_DB_NAME)) != EVENT_EXEC_PARALLEL)) { if (parallel) { /* There are two classes of events that Coordinator executes itself. One e.g the master Rotate requires all Workers to finish up their assignments. The other async class, e.g the slave Rotate, can't have this such synchronization because Worker might be waiting for terminal events to finish. */ if (actual_exec_mode != EVENT_EXEC_ASYNC) { /* this event does not split the current group but is indeed a separator beetwen two master's binlog therefore requiring Workers to sync. */ if (rli->curr_group_da.size() > 0 && is_mts_db_partitioned(rli) && get_type_code() != binary_log::INCIDENT_EVENT) { char llbuff[22]; /* Possible reason is a old version binlog sequential event wrappped with BEGIN/COMMIT or preceeded by User|Int|Random- var. MTS has to stop to suggest restart in the permanent sequential mode. */ llstr(rli->get_event_relay_log_pos(), llbuff); my_error(ER_MTS_CANT_PARALLEL, MYF(0), get_type_str(), rli->get_event_relay_log_name(), llbuff, "possible malformed group of events from an old master"); /* Coordinator cant continue, it marks MTS group status accordingly */ rli->mts_group_status= Relay_log_info::MTS_KILLED_GROUP; goto err; } if (get_type_code() == binary_log::INCIDENT_EVENT && rli->curr_group_da.size() > 0 && rli->current_mts_submode->get_type() == MTS_PARALLEL_TYPE_LOGICAL_CLOCK) { #ifndef NDEBUG assert(rli->curr_group_da.size() == 1); Log_event* ev= rli->curr_group_da[0].data; assert(ev->get_type_code() == binary_log::GTID_LOG_EVENT || ev->get_type_code() == binary_log::ANONYMOUS_GTID_LOG_EVENT); #endif /* With MTS logical clock mode, when coordinator is applying an incident event, it must withdraw delegated_job increased by the incident's GTID before waiting for workers to finish. So that it can exit from mts_checkpoint_routine. */ ((Mts_submode_logical_clock*)rli->current_mts_submode)-> withdraw_delegated_job(); } /* Marking sure the event will be executed in sequential mode. */ if (rli->current_mts_submode->wait_for_workers_to_finish(rli) == -1) { // handle synchronization error rli->report(WARNING_LEVEL, 0, "Slave worker thread has failed to apply an event. As a " "consequence, the coordinator thread is stopping " "execution."); DBUG_RETURN(-1); } /* Given not in-group mark the event handler can invoke checkpoint update routine in the following course. */ assert(rli->mts_group_status == Relay_log_info::MTS_NOT_IN_GROUP || !is_mts_db_partitioned(rli)); if (get_type_code() == binary_log::INCIDENT_EVENT && rli->curr_group_da.size() > 0) { assert(rli->curr_group_da.size() == 1); /* When MTS is enabled, the incident event must be applied by the coordinator. So the coordinator applies its GTID right before applying the incident event.. */ int error= apply_gtid_event(rli); if (error) DBUG_RETURN(-1); } #ifndef NDEBUG /* all Workers are idle as done through wait_for_workers_to_finish */ for (uint k= 0; k < rli->curr_group_da.size(); k++) { assert(!(rli->workers[k]->usage_partition)); assert(!(rli->workers[k]->jobs.len)); } #endif } else { assert(actual_exec_mode == EVENT_EXEC_ASYNC); } } DBUG_RETURN(do_apply_event(rli)); } assert(actual_exec_mode == EVENT_EXEC_PARALLEL); assert(!(rli->curr_group_seen_begin && ends_group()) || /* This is an empty group being processed due to gtids. */ (rli->curr_group_seen_begin && rli->curr_group_seen_gtid && ends_group()) || is_mts_db_partitioned(rli) || rli->last_assigned_worker || /* Begin_load_query can be logged w/o db info and within Begin/Commit. That's a pattern forcing sequential applying of LOAD-DATA. */ (rli->curr_group_da.back().data-> get_type_code() == binary_log::BEGIN_LOAD_QUERY_EVENT) || /* Delete_file can also be logged w/o db info and within Begin/Commit. That's a pattern forcing sequential applying of LOAD-DATA. */ (rli->curr_group_da.back().data-> get_type_code() == binary_log::DELETE_FILE_EVENT)); worker= NULL; rli->mts_group_status= Relay_log_info::MTS_IN_GROUP; worker= (Relay_log_info*) (rli->last_assigned_worker= get_slave_worker(rli)); #ifndef NDEBUG if (rli->last_assigned_worker) DBUG_PRINT("mts", ("Assigning job to worker %lu", rli->last_assigned_worker->id)); #endif err: if (rli_thd->is_error() || (!worker && rli->abort_slave)) { assert(!worker); /* Destroy all deferred buffered events but the current prior to exit. The current one will be deleted as an event never destined/assigned to any Worker in Coordinator's regular execution path. */ for (uint k= 0; k < rli->curr_group_da.size(); k++) { Log_event *ev_buf= rli->curr_group_da[k].data; if (this != ev_buf) delete ev_buf; } rli->curr_group_da.clear(); } else { assert(worker || rli->curr_group_assigned_parts.size() == 0); } DBUG_RETURN((!(rli_thd->is_error() || (!worker && rli->abort_slave)) || DBUG_EVALUATE_IF("fault_injection_get_slave_worker", 1, 0)) ? 0 : -1); } #endif /************************************************************************** Query_log_event methods **************************************************************************/ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** This (which is used only for SHOW BINLOG EVENTS) could be updated to print SET @@session_var=. But this is not urgent, as SHOW BINLOG EVENTS is only an information, it does not produce suitable queries to replay (for example it does not print LOAD DATA INFILE). @todo show the catalog ?? */ int Query_log_event::pack_info(Protocol *protocol) { // TODO: show the catalog ?? String str_buf; // Add use `DB` to the string if required if (!(common_header->flags & LOG_EVENT_SUPPRESS_USE_F) && db && db_len) { str_buf.append("use "); append_identifier(this->thd, &str_buf, db, db_len); str_buf.append("; "); } // Add the query to the string if (query && q_len) str_buf.append(query); // persist the buffer in protocol protocol->store(str_buf.ptr(), str_buf.length(), &my_charset_bin); return 0; } #endif #ifndef MYSQL_CLIENT /** Utility function for the next method (Query_log_event::write()) . */ static void write_str_with_code_and_len(uchar **dst, const char *src, size_t len, uint code) { /* only 1 byte to store the length of catalog, so it should not surpass 255 */ assert(len <= 255); assert(src); *((*dst)++)= code; *((*dst)++)= (uchar) len; memmove(*dst, src, len); (*dst)+= len; } /** Query_log_event::write(). @note In this event we have to modify the header to have the correct EVENT_LEN_OFFSET as we don't yet know how many status variables we will print! */ bool Query_log_event::write(IO_CACHE* file) { uchar buf[Binary_log_event::QUERY_HEADER_LEN + MAX_SIZE_LOG_EVENT_STATUS]; uchar *start, *start_of_status; size_t event_length; if (!query) return 1; // Something wrong with event /* We want to store the thread id: (- as an information for the user when he reads the binlog) - if the query uses temporary table: for the slave SQL thread to know to which master connection the temp table belongs. Now imagine we (write()) are called by the slave SQL thread (we are logging a query executed by this thread; the slave runs with --log-slave-updates). Then this query will be logged with thread_id=the_thread_id_of_the_SQL_thread. Imagine that 2 temp tables of the same name were created simultaneously on the master (in the masters binlog you have CREATE TEMPORARY TABLE t; (thread 1) CREATE TEMPORARY TABLE t; (thread 2) ...) then in the slave's binlog there will be CREATE TEMPORARY TABLE t; (thread_id_of_the_slave_SQL_thread) CREATE TEMPORARY TABLE t; (thread_id_of_the_slave_SQL_thread) which is bad (same thread id!). To avoid this, we log the thread's thread id EXCEPT for the SQL slave thread for which we log the original (master's) thread id. Now this moves the bug: what happens if the thread id on the master was 10 and when the slave replicates the query, a connection number 10 is opened by a normal client on the slave, and updates a temp table of the same name? We get a problem again. To avoid this, in the handling of temp tables (sql_base.cc) we use thread_id AND server_id. TODO when this is merged into 4.1: in 4.1, slave_proxy_id has been renamed to pseudo_thread_id and is a session variable: that's to make mysqlbinlog work with temp tables. We probably need to introduce SET PSEUDO_SERVER_ID for mysqlbinlog in 4.1. mysqlbinlog would print: SET PSEUDO_SERVER_ID= SET PSEUDO_THREAD_ID= for each query using temp tables. */ int4store(buf + Q_THREAD_ID_OFFSET, slave_proxy_id); int4store(buf + Q_EXEC_TIME_OFFSET, exec_time); buf[Q_DB_LEN_OFFSET] = (char) db_len; int2store(buf + Q_ERR_CODE_OFFSET, error_code); /* You MUST always write status vars in increasing order of code. This guarantees that a slightly older slave will be able to parse those he knows. */ start_of_status= start= buf+Binary_log_event::QUERY_HEADER_LEN; if (flags2_inited) { *start++= Q_FLAGS2_CODE; int4store(start, flags2); start+= 4; } if (sql_mode_inited) { *start++= Q_SQL_MODE_CODE; int8store(start, sql_mode); start+= 8; } if (catalog_len) // i.e. this var is inited (false for 4.0 events) { write_str_with_code_and_len(&start, catalog, catalog_len, Q_CATALOG_NZ_CODE); /* In 5.0.x where x<4 masters we used to store the end zero here. This was a waste of one byte so we don't do it in x>=4 masters. We change code to Q_CATALOG_NZ_CODE, because re-using the old code would make x<4 slaves of this x>=4 master segfault (expecting a zero when there is none). Remaining compatibility problems are: the older slave will not find the catalog; but it is will not crash, and it's not an issue that it does not find the catalog as catalogs were not used in these older MySQL versions (we store it in binlog and read it from relay log but do nothing useful with it). What is an issue is that the older slave will stop processing the Q_* blocks (and jumps to the db/query) as soon as it sees unknown Q_CATALOG_NZ_CODE; so it will not be able to read Q_AUTO_INCREMENT*, Q_CHARSET and so replication will fail silently in various ways. Documented that you should not mix alpha/beta versions if they are not exactly the same version, with example of 5.0.3->5.0.2 and 5.0.4->5.0.3. If replication is from older to new, the new will recognize Q_CATALOG_CODE and have no problem. */ } if (auto_increment_increment != 1 || auto_increment_offset != 1) { *start++= Q_AUTO_INCREMENT; int2store(start, static_cast<uint16>(auto_increment_increment)); int2store(start+2, static_cast<uint16>(auto_increment_offset)); start+= 4; } if (charset_inited) { *start++= Q_CHARSET_CODE; memcpy(start, charset, 6); start+= 6; } if (time_zone_len) { /* In the TZ sys table, column Name is of length 64 so this should be ok */ assert(time_zone_len <= MAX_TIME_ZONE_NAME_LENGTH); write_str_with_code_and_len(&start, time_zone_str, time_zone_len, Q_TIME_ZONE_CODE); } if (lc_time_names_number) { assert(lc_time_names_number <= 0xFF); *start++= Q_LC_TIME_NAMES_CODE; int2store(start, lc_time_names_number); start+= 2; } if (charset_database_number) { assert(charset_database_number <= 0xFF); *start++= Q_CHARSET_DATABASE_CODE; int2store(start, charset_database_number); start+= 2; } if (table_map_for_update) { *start++= Q_TABLE_MAP_FOR_UPDATE_CODE; int8store(start, table_map_for_update); start+= 8; } if (master_data_written != 0) { /* Q_MASTER_DATA_WRITTEN_CODE only exists in relay logs where the master has binlog_version<4 and the slave has binlog_version=4. See comment for master_data_written in log_event.h for details. */ *start++= Q_MASTER_DATA_WRITTEN_CODE; int4store(start, static_cast<uint32>(master_data_written)); start+= 4; } if (thd && thd->need_binlog_invoker()) { LEX_CSTRING invoker_user; LEX_CSTRING invoker_host; memset(&invoker_user, 0, sizeof(invoker_user)); memset(&invoker_host, 0, sizeof(invoker_host)); if (thd->slave_thread && thd->has_invoker()) { /* user will be null, if master is older than this patch */ invoker_user= thd->get_invoker_user(); invoker_host= thd->get_invoker_host(); } else { Security_context *ctx= thd->security_context(); LEX_CSTRING priv_user= ctx->priv_user(); LEX_CSTRING priv_host= ctx->priv_host(); invoker_user.length= priv_user.length; invoker_user.str= (char *) priv_user.str; if (priv_host.str[0] != '\0') { invoker_host.str= (char *) priv_host.str; invoker_host.length= priv_host.length; } } *start++= Q_INVOKER; /* Store user length and user. The max length of use is 16, so 1 byte is enough to store the user's length. */ *start++= (uchar)invoker_user.length; memcpy(start, invoker_user.str, invoker_user.length); start+= invoker_user.length; /* Store host length and host. The max length of host is 60, so 1 byte is enough to store the host's length. */ *start++= (uchar)invoker_host.length; memcpy(start, invoker_host.str, invoker_host.length); start+= invoker_host.length; } if (thd && thd->get_binlog_accessed_db_names() != NULL) { uchar dbs; *start++= Q_UPDATED_DB_NAMES; compile_time_assert(MAX_DBS_IN_EVENT_MTS <= OVER_MAX_DBS_IN_EVENT_MTS); /* In case of the number of db:s exceeds MAX_DBS_IN_EVENT_MTS no db:s is written and event will require the sequential applying on slave. */ dbs= (thd->get_binlog_accessed_db_names()->elements <= MAX_DBS_IN_EVENT_MTS) ? thd->get_binlog_accessed_db_names()->elements : OVER_MAX_DBS_IN_EVENT_MTS; assert(dbs != 0); if (dbs <= MAX_DBS_IN_EVENT_MTS) { List_iterator_fast<char> it(*thd->get_binlog_accessed_db_names()); char *db_name= it++; /* the single "" db in the acccessed db list corresponds to the same as exceeds MAX_DBS_IN_EVENT_MTS case, so dbs is set to the over-max. */ if (dbs == 1 && !strcmp(db_name, "")) dbs= OVER_MAX_DBS_IN_EVENT_MTS; *start++= dbs; if (dbs != OVER_MAX_DBS_IN_EVENT_MTS) do { strcpy((char*) start, db_name); start += strlen(db_name) + 1; } while ((db_name= it++)); } else { *start++= dbs; } } if (thd && thd->query_start_usec_used) { *start++= Q_MICROSECONDS; get_time(); int3store(start, common_header->when.tv_usec); start+= 3; } if (thd && thd->binlog_need_explicit_defaults_ts == true) { *start++= Q_EXPLICIT_DEFAULTS_FOR_TIMESTAMP; *start++= thd->variables.explicit_defaults_for_timestamp; } /* NOTE: When adding new status vars, please don't forget to update the MAX_SIZE_LOG_EVENT_STATUS in log_event.h Here there could be code like if (command-line-option-which-says-"log_this_variable" && inited) { *start++= Q_THIS_VARIABLE_CODE; int4store(start, this_variable); start+= 4; } */ /* Store length of status variables */ status_vars_len= (uint) (start-start_of_status); assert(status_vars_len <= MAX_SIZE_LOG_EVENT_STATUS); int2store(buf + Q_STATUS_VARS_LEN_OFFSET, status_vars_len); /* Calculate length of whole event The "1" below is the \0 in the db's length */ event_length= (uint) (start-buf) + get_post_header_size_for_derived() + db_len + 1 + q_len; return (write_header(file, event_length) || wrapper_my_b_safe_write(file, (uchar*) buf, Binary_log_event::QUERY_HEADER_LEN) || write_post_header_for_derived(file) || wrapper_my_b_safe_write(file, start_of_status, (uint) (start-start_of_status)) || wrapper_my_b_safe_write(file, db ? (uchar*) db : (uchar*)"", db_len + 1) || wrapper_my_b_safe_write(file, (uchar*) query, q_len) || write_footer(file)) ? 1 : 0; } /** The simplest constructor that could possibly work. This is used for creating static objects that have a special meaning and are invisible to the log. */ Query_log_event::Query_log_event() : binary_log::Query_event(), Log_event(header(), footer()), data_buf(NULL) {} /** Creates a Query Log Event. @param thd_arg Thread handle @param query_arg Array of char representing the query @param query_length Size of the 'query_arg' array @param using_trans Indicates that there are transactional changes. @param immediate After being written to the binary log, the event must be flushed immediately. This indirectly implies the stmt-cache. @param suppress_use Suppress the generation of 'USE' statements @param errcode The error code of the query @param ignore Ignore user's statement, i.e. lex information, while deciding which cache must be used. */ Query_log_event::Query_log_event(THD* thd_arg, const char* query_arg, size_t query_length, bool using_trans, bool immediate, bool suppress_use, int errcode, bool ignore_cmd_internals) : binary_log::Query_event(query_arg, thd_arg->catalog().str, thd_arg->db().str, query_length, thd_arg->thread_id(), thd_arg->variables.sql_mode, thd_arg->variables.auto_increment_increment, thd_arg->variables.auto_increment_offset, thd_arg->variables.lc_time_names->number, (ulonglong)thd_arg->table_map_for_update, errcode, thd_arg->db().str ? strlen(thd_arg->db().str) : 0, thd_arg->catalog().str ? strlen(thd_arg->catalog().str) : 0), Log_event(thd_arg, (thd_arg->thread_specific_used ? LOG_EVENT_THREAD_SPECIFIC_F : 0) | (suppress_use ? LOG_EVENT_SUPPRESS_USE_F : 0), using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()), data_buf(0) { DBUG_EXECUTE_IF("debug_lock_before_query_log_event", DBUG_SYNC_POINT("debug_lock.before_query_log_event", 10);); /* save the original thread id; we already know the server id */ slave_proxy_id= thd_arg->variables.pseudo_thread_id; if (query != 0) is_valid_param= true; /* exec_time calculation has changed to use the same method that is used to fill out "thd_arg->start_time" */ struct timeval end_time; ulonglong micro_end_time= my_micro_time(); my_micro_time_to_timeval(micro_end_time, &end_time); exec_time= end_time.tv_sec - thd_arg->start_time.tv_sec; /** @todo this means that if we have no catalog, then it is replicated as an existing catalog of length zero. is that safe? /sven */ catalog_len = (catalog) ? strlen(catalog) : 0; /* status_vars_len is set just before writing the event */ db_len = (db) ? strlen(db) : 0; if (thd_arg->variables.collation_database != thd_arg->db_charset) charset_database_number= thd_arg->variables.collation_database->number; /* We only replicate over the bits of flags2 that we need: the rest are masked out by "& OPTIONS_WRITTEN_TO_BINLOG". We also force AUTOCOMMIT=1. Rationale (cf. BUG#29288): After fixing BUG#26395, we always write BEGIN and COMMIT around all transactions (even single statements in autocommit mode). This is so that replication from non-transactional to transactional table and error recovery from XA to non-XA table should work as expected. The BEGIN/COMMIT are added in log.cc. However, there is one exception: MyISAM bypasses log.cc and writes directly to the binlog. So if autocommit is off, master has MyISAM, and slave has a transactional engine, then the slave will just see one long never-ending transaction. The only way to bypass explicit BEGIN/COMMIT in the binlog is by using a non-transactional table. So setting AUTOCOMMIT=1 will make this work as expected. Note: explicitly replicate AUTOCOMMIT=1 from master. We do not assume AUTOCOMMIT=1 on slave; the slave still reads the state of the autocommit flag as written by the master to the binlog. This behavior may change after WL#4162 has been implemented. */ flags2= (uint32) (thd_arg->variables.option_bits & (OPTIONS_WRITTEN_TO_BIN_LOG & ~OPTION_NOT_AUTOCOMMIT)); assert(thd_arg->variables.character_set_client->number < 256*256); assert(thd_arg->variables.collation_connection->number < 256*256); assert(thd_arg->variables.collation_server->number < 256*256); assert(thd_arg->variables.character_set_client->mbminlen == 1); int2store(charset, thd_arg->variables.character_set_client->number); int2store(charset+2, thd_arg->variables.collation_connection->number); int2store(charset+4, thd_arg->variables.collation_server->number); if (thd_arg->time_zone_used) { /* Note that our event becomes dependent on the Time_zone object representing the time zone. Fortunately such objects are never deleted or changed during mysqld's lifetime. */ time_zone_len= thd_arg->variables.time_zone->get_name()->length(); time_zone_str= thd_arg->variables.time_zone->get_name()->ptr(); } else time_zone_len= 0; /* In what follows, we define in which cache, trx-cache or stmt-cache, this Query Log Event will be written to. If ignore_cmd_internals is defined, we rely on the is_trans flag to choose the cache and this is done in the base class Log_event. False means that the stmt-cache will be used and upon statement commit/rollback the cache will be flushed to disk. True means that the trx-cache will be used and upon transaction commit/rollback the cache will be flushed to disk. If set immediate cache is defined, for convenience, we automatically use the stmt-cache. This mean that the statement will be written to the stmt-cache and immediately flushed to disk without waiting for a commit/rollback notification. For example, the cluster/ndb captures a request to execute a DDL statement and synchronously propagate it to all available MySQL servers. Unfortunately, the current protocol assumes that the generated events are immediately written to diks and does not check for commit/rollback. Upon dropping a connection, DDLs (i.e. DROP TEMPORARY TABLE) are generated and in this case the statements have the immediate flag set because there is no commit/rollback. If the immediate flag is not set, the decision on the cache is based on the current statement and the flag is_trans, which indicates if a transactional engine was updated. Statements are classifed as row producers (i.e. can_generate_row_events()) or non-row producers. Non-row producers, DDL in general, are treated as the immediate flag was set and for convenience are written to the stmt-cache and immediately flushed to disk. Row producers are handled in general according to the is_trans flag. False means that the stmt-cache will be used and upon statement commit/rollback the cache will be flushed to disk. True means that the trx-cache will be used and upon transaction commit/rollback the cache will be flushed to disk. Unfortunately, there are exceptions to this non-row and row producer rules: . The SAVEPOINT, ROLLBACK TO SAVEPOINT, RELEASE SAVEPOINT does not have the flag is_trans set because there is no updated engine but must be written to the trx-cache. . SET If auto-commit is on, it must not go through a cache. . CREATE TABLE is classfied as non-row producer but CREATE TEMPORARY must be handled as row producer. . DROP TABLE is classfied as non-row producer but DROP TEMPORARY must be handled as row producer. Finally, some statements that does not have the flag is_trans set may be written to the trx-cache based on the following criteria: . updated both a transactional and a non-transactional engine (i.e. stmt_has_updated_trans_table()). . accessed both a transactional and a non-transactional engine and is classified as unsafe (i.e. is_mixed_stmt_unsafe()). . is executed within a transaction and previously a transactional engine was updated and the flag binlog_direct_non_trans_update is set. */ if (ignore_cmd_internals) return; /* TRUE defines that the trx-cache must be used. */ bool cmd_can_generate_row_events= FALSE; /* TRUE defines that the trx-cache must be used. */ bool cmd_must_go_to_trx_cache= FALSE; LEX *lex= thd->lex; if (!immediate) { switch (lex->sql_command) { case SQLCOM_DROP_TABLE: cmd_can_generate_row_events= lex->drop_temporary && thd->in_multi_stmt_transaction_mode(); break; case SQLCOM_CREATE_TABLE: cmd_must_go_to_trx_cache= lex->select_lex->item_list.elements && thd->is_current_stmt_binlog_format_row(); cmd_can_generate_row_events= ((lex->create_info.options & HA_LEX_CREATE_TMP_TABLE) && thd->in_multi_stmt_transaction_mode()) || cmd_must_go_to_trx_cache; break; case SQLCOM_SET_OPTION: if (lex->autocommit) cmd_can_generate_row_events= cmd_must_go_to_trx_cache= FALSE; else cmd_can_generate_row_events= TRUE; break; case SQLCOM_RELEASE_SAVEPOINT: case SQLCOM_ROLLBACK_TO_SAVEPOINT: case SQLCOM_SAVEPOINT: case SQLCOM_XA_PREPARE: cmd_can_generate_row_events= cmd_must_go_to_trx_cache= TRUE; break; default: cmd_can_generate_row_events= sqlcom_can_generate_row_events(thd->lex->sql_command); break; } } if (cmd_can_generate_row_events) { cmd_must_go_to_trx_cache= cmd_must_go_to_trx_cache || using_trans; if (cmd_must_go_to_trx_cache || stmt_has_updated_trans_table(thd->get_transaction()->ha_trx_info(Transaction_ctx::STMT)) || thd->lex->is_mixed_stmt_unsafe(thd->in_multi_stmt_transaction_mode(), thd->variables.binlog_direct_non_trans_update, trans_has_updated_trans_table(thd), thd->tx_isolation) || (!thd->variables.binlog_direct_non_trans_update && trans_has_updated_trans_table(thd))) { event_logging_type= Log_event::EVENT_NORMAL_LOGGING; event_cache_type= Log_event::EVENT_TRANSACTIONAL_CACHE; } else { event_logging_type= Log_event::EVENT_NORMAL_LOGGING; event_cache_type= Log_event::EVENT_STMT_CACHE; } } else { event_logging_type= Log_event::EVENT_IMMEDIATE_LOGGING; event_cache_type= Log_event::EVENT_STMT_CACHE; } assert(event_cache_type != Log_event::EVENT_INVALID_CACHE); assert(event_logging_type != Log_event::EVENT_INVALID_LOGGING); DBUG_PRINT("info",("Query_log_event has flags2: %lu sql_mode: %llu", (ulong) flags2, (ulonglong) sql_mode)); } #endif /* MYSQL_CLIENT */ /** This is used by the SQL slave thread to prepare the event before execution. */ Query_log_event::Query_log_event(const char* buf, uint event_len, const Format_description_event *description_event, Log_event_type event_type) :binary_log::Query_event(buf, event_len, description_event, event_type), Log_event(header(), footer()) { DBUG_ENTER("Query_log_event::Query_log_event(char*,...)"); slave_proxy_id= thread_id; exec_time= query_exec_time; ulong buf_len= catalog_len + 1 + time_zone_len + 1 + user_len + 1 + host_len + 1 + data_len + 1; #if !defined(MYSQL_CLIENT) buf_len+= sizeof(size_t)/*for db_len */ + db_len + 1 + QUERY_CACHE_FLAGS_SIZE; #endif if (!(data_buf = (Log_event_header::Byte*) my_malloc(key_memory_log_event, buf_len, MYF(MY_WME)))) DBUG_VOID_RETURN; /* The data buffer is used by the slave SQL thread while applying the event. The catalog, time_zone)str, user, host, db, query are pointers to this data_buf. The function call below, points these const pointers to the data buffer. */ if (!(fill_data_buf(data_buf, buf_len))) DBUG_VOID_RETURN; if (query != 0 && q_len > 0) is_valid_param= true; /** The buffer contains the following: +--------+-----------+------+------+---------+----+-------+ | catlog | time_zone | user | host | db name | \0 | Query | +--------+-----------+------+------+---------+----+-------+ To support the query cache we append the following buffer to the above +-------+----------------------------------------+-------+ |db len | uninitiatlized space of size of db len | FLAGS | +-------+----------------------------------------+-------+ The area of buffer starting from Query field all the way to the end belongs to the Query buffer and its structure is described in alloc_query() in sql_parse.cc We append the db length at the end of the buffer. This will be used by Query_cache::send_result_to_client() in case the query cache is On. */ #if !defined(MYSQL_CLIENT) size_t db_length= db_len; memcpy(data_buf + query_data_written, &db_length, sizeof(size_t)); #endif DBUG_VOID_RETURN; } #ifdef MYSQL_CLIENT /** Query_log_event::print(). @todo print the catalog ?? */ void Query_log_event::print_query_header(IO_CACHE* file, PRINT_EVENT_INFO* print_event_info) { // TODO: print the catalog ?? char buff[48], *end; // Enough for "SET TIMESTAMP=1305535348.123456" char quoted_id[1+ 2*FN_REFLEN+ 2]; size_t quoted_len= 0; bool different_db= true; uint32 tmp; if (!print_event_info->short_form) { print_header(file, print_event_info, FALSE); my_b_printf(file, "\t%s\tthread_id=%lu\texec_time=%lu\terror_code=%d\n", get_type_str(), (ulong) thread_id, (ulong) exec_time, error_code); } if ((common_header->flags & LOG_EVENT_SUPPRESS_USE_F)) { if (!is_trans_keyword()) print_event_info->db[0]= '\0'; } else if (db) { #ifdef MYSQL_SERVER quoted_len= my_strmov_quoted_identifier(this->thd, (char*)quoted_id, db, 0); #else quoted_len= my_strmov_quoted_identifier((char*)quoted_id, db); #endif quoted_id[quoted_len]= '\0'; different_db= memcmp(print_event_info->db, db, db_len + 1); if (different_db) memcpy(print_event_info->db, db, db_len + 1); if (db[0] && different_db) my_b_printf(file, "use %s%s\n", quoted_id, print_event_info->delimiter); } end= int10_to_str((long)common_header->when.tv_sec, my_stpcpy(buff,"SET TIMESTAMP="),10); if (common_header->when.tv_usec) end+= sprintf(end, ".%06d", (int) common_header->when.tv_usec); end= my_stpcpy(end, print_event_info->delimiter); *end++='\n'; assert(end < buff + sizeof(buff)); my_b_write(file, (uchar*) buff, (uint) (end-buff)); if ((!print_event_info->thread_id_printed || ((common_header->flags & LOG_EVENT_THREAD_SPECIFIC_F) && thread_id != print_event_info->thread_id))) { // If --short-form, print deterministic value instead of pseudo_thread_id. my_b_printf(file,"SET @@session.pseudo_thread_id=%lu%s\n", short_form ? 999999999 : (ulong)thread_id, print_event_info->delimiter); print_event_info->thread_id= thread_id; print_event_info->thread_id_printed= 1; } /* If flags2_inited==0, this is an event from 3.23 or 4.0; nothing to print (remember we don't produce mixed relay logs so there cannot be 5.0 events before that one so there is nothing to reset). */ if (likely(flags2_inited)) /* likely as this will mainly read 5.0 logs */ { /* tmp is a bitmask of bits which have changed. */ if (likely(print_event_info->flags2_inited)) /* All bits which have changed */ tmp= (print_event_info->flags2) ^ flags2; else /* that's the first Query event we read */ { print_event_info->flags2_inited= 1; tmp= ~((uint32)0); /* all bits have changed */ } if (unlikely(tmp)) /* some bits have changed */ { bool need_comma= 0; my_b_printf(file, "SET "); print_set_option(file, tmp, OPTION_NO_FOREIGN_KEY_CHECKS, ~flags2, "@@session.foreign_key_checks", &need_comma); print_set_option(file, tmp, OPTION_AUTO_IS_NULL, flags2, "@@session.sql_auto_is_null", &need_comma); print_set_option(file, tmp, OPTION_RELAXED_UNIQUE_CHECKS, ~flags2, "@@session.unique_checks", &need_comma); print_set_option(file, tmp, OPTION_NOT_AUTOCOMMIT, ~flags2, "@@session.autocommit", &need_comma); my_b_printf(file,"%s\n", print_event_info->delimiter); print_event_info->flags2= flags2; } } /* Now the session variables; it's more efficient to pass SQL_MODE as a number instead of a comma-separated list. FOREIGN_KEY_CHECKS, SQL_AUTO_IS_NULL, UNIQUE_CHECKS are session-only variables (they have no global version; they're not listed in sql_class.h), The tests below work for pure binlogs or pure relay logs. Won't work for mixed relay logs but we don't create mixed relay logs (that is, there is no relay log with a format change except within the 3 first events, which mysqlbinlog handles gracefully). So this code should always be good. */ if (likely(sql_mode_inited) && (unlikely(print_event_info->sql_mode != sql_mode || !print_event_info->sql_mode_inited))) { my_b_printf(file,"SET @@session.sql_mode=%lu%s\n", (ulong)sql_mode, print_event_info->delimiter); print_event_info->sql_mode= sql_mode; print_event_info->sql_mode_inited= 1; } if (print_event_info->auto_increment_increment != auto_increment_increment || print_event_info->auto_increment_offset != auto_increment_offset) { my_b_printf(file,"SET @@session.auto_increment_increment=%u, @@session.auto_increment_offset=%u%s\n", auto_increment_increment,auto_increment_offset, print_event_info->delimiter); print_event_info->auto_increment_increment= auto_increment_increment; print_event_info->auto_increment_offset= auto_increment_offset; } /* TODO: print the catalog when we feature SET CATALOG */ if (likely(charset_inited) && (unlikely(!print_event_info->charset_inited || memcmp(print_event_info->charset, charset, 6)))) { char *charset_p= charset; // Avoid type-punning warning. CHARSET_INFO *cs_info= get_charset(uint2korr(charset_p), MYF(MY_WME)); if (cs_info) { /* for mysql client */ my_b_printf(file, "/*!\\C %s */%s\n", cs_info->csname, print_event_info->delimiter); } my_b_printf(file,"SET " "@@session.character_set_client=%d," "@@session.collation_connection=%d," "@@session.collation_server=%d" "%s\n", uint2korr(charset_p), uint2korr(charset+2), uint2korr(charset+4), print_event_info->delimiter); memcpy(print_event_info->charset, charset, 6); print_event_info->charset_inited= 1; } if (time_zone_len) { if (memcmp(print_event_info->time_zone_str, time_zone_str, time_zone_len+1)) { my_b_printf(file,"SET @@session.time_zone='%s'%s\n", time_zone_str, print_event_info->delimiter); memcpy(print_event_info->time_zone_str, time_zone_str, time_zone_len+1); } } if (lc_time_names_number != print_event_info->lc_time_names_number) { my_b_printf(file, "SET @@session.lc_time_names=%d%s\n", lc_time_names_number, print_event_info->delimiter); print_event_info->lc_time_names_number= lc_time_names_number; } if (charset_database_number != print_event_info->charset_database_number) { if (charset_database_number) my_b_printf(file, "SET @@session.collation_database=%d%s\n", charset_database_number, print_event_info->delimiter); else my_b_printf(file, "SET @@session.collation_database=DEFAULT%s\n", print_event_info->delimiter); print_event_info->charset_database_number= charset_database_number; } if (explicit_defaults_ts != TERNARY_UNSET) my_b_printf(file, "SET @@session.explicit_defaults_for_timestamp=%d%s\n", explicit_defaults_ts == TERNARY_OFF? 0 : 1, print_event_info->delimiter); } void Query_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { IO_CACHE *const head= &print_event_info->head_cache; /** reduce the size of io cache so that the write function is called for every call to my_b_write(). */ DBUG_EXECUTE_IF ("simulate_file_write_error", {head->write_pos= head->write_end- 500;}); print_query_header(head, print_event_info); my_b_write(head, (uchar*) query, q_len); my_b_printf(head, "\n%s\n", print_event_info->delimiter); } #endif /* MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** Associating slave Worker thread to a subset of temporary tables. @param thd_arg THD instance pointer @param rli Relay_log_info of the worker */ void Query_log_event::attach_temp_tables_worker(THD *thd_arg, const Relay_log_info* rli) { rli->current_mts_submode->attach_temp_tables(thd_arg, rli, this); } /** Dissociating slave Worker thread from its thd->temporary_tables to possibly update the involved entries of db-to-worker hash with new values of temporary_tables. @param thd_arg THD instance pointer @param rli relay log info of the worker thread */ void Query_log_event::detach_temp_tables_worker(THD *thd_arg, const Relay_log_info *rli) { rli->current_mts_submode->detach_temp_tables(thd_arg, rli, this); } /* Query_log_event::do_apply_event() */ int Query_log_event::do_apply_event(Relay_log_info const *rli) { return do_apply_event(rli, query, q_len); } /* is_silent_error Return true if the thread has an error which should be handled silently */ static bool is_silent_error(THD* thd) { DBUG_ENTER("is_silent_error"); Diagnostics_area::Sql_condition_iterator it= thd->get_stmt_da()->sql_conditions(); const Sql_condition *err; while ((err= it++)) { DBUG_PRINT("info", ("has condition %d %s", err->mysql_errno(), err->message_text())); switch (err->mysql_errno()) { case ER_SLAVE_SILENT_RETRY_TRANSACTION: { DBUG_RETURN(true); } default: break; } } DBUG_RETURN(false); } /** @todo Compare the values of "affected rows" around here. Something like: @code if ((uint32) affected_in_event != (uint32) affected_on_slave) { sql_print_error("Slave: did not get the expected number of affected \ rows running query from master - expected %d, got %d (this numbers \ should have matched modulo 4294967296).", 0, ...); thd->query_error = 1; } @endcode We may also want an option to tell the slave to ignore "affected" mismatch. This mismatch could be implemented with a new ER_ code, and to ignore it you would use --slave-skip-errors... */ int Query_log_event::do_apply_event(Relay_log_info const *rli, const char *query_arg, size_t q_len_arg) { DBUG_ENTER("Query_log_event::do_apply_event"); int expected_error,actual_error= 0; HA_CREATE_INFO db_options; DBUG_PRINT("info", ("query=%s, q_len_arg=%lu", query, static_cast<unsigned long>(q_len_arg))); /* Colleagues: please never free(thd->catalog) in MySQL. This would lead to bugs as here thd->catalog is a part of an alloced block, not an entire alloced block (see Query_log_event::do_apply_event()). Same for thd->db().str. Thank you. */ if (catalog_len) { LEX_CSTRING catalog_lex_cstr= { catalog, catalog_len}; thd->set_catalog(catalog_lex_cstr); } else thd->set_catalog(EMPTY_CSTR); size_t valid_len; bool len_error; bool is_invalid_db_name= validate_string(system_charset_info, db, db_len, &valid_len, &len_error); DBUG_PRINT("debug",("is_invalid_db_name= %s, valid_len=%zu, len_error=%s", is_invalid_db_name ? "true" : "false", valid_len, len_error ? "true" : "false")); if (is_invalid_db_name || len_error) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "Invalid database name in Query event."); thd->is_slave_error= true; goto end; } set_thd_db(thd, db, db_len); /* Setting the character set and collation of the current database thd->db. */ load_db_opt_by_name(thd, thd->db().str, &db_options); if (db_options.default_table_charset) thd->db_charset= db_options.default_table_charset; thd->variables.auto_increment_increment= auto_increment_increment; thd->variables.auto_increment_offset= auto_increment_offset; if (explicit_defaults_ts != TERNARY_UNSET) thd->variables.explicit_defaults_for_timestamp= explicit_defaults_ts == TERNARY_OFF? 0 : 1; /* todo: such cleanup should not be specific to Query event and therefore is preferable at a common with other event pre-execution point */ clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); if (strcmp("COMMIT", query) == 0 && rli->tables_to_lock != NULL) { /* Cleaning-up the last statement context: the terminal event of the current statement flagged with STMT_END_F got filtered out in ndb circular replication. */ int error; char llbuff[22]; if ((error= rows_event_stmt_cleanup(const_cast<Relay_log_info*>(rli), thd))) { const_cast<Relay_log_info*>(rli)->report(ERROR_LEVEL, error, "Error in cleaning up after an event preceding the commit; " "the group log file/position: %s %s", const_cast<Relay_log_info*>(rli)->get_group_master_log_name(), llstr(const_cast<Relay_log_info*>(rli)->get_group_master_log_pos(), llbuff)); } /* Executing a part of rli->stmt_done() logics that does not deal with group position change. The part is redundant now but is future-change-proof addon, e.g if COMMIT handling will start checking invariants like IN_STMT flag must be off at committing the transaction. */ const_cast<Relay_log_info*>(rli)->inc_event_relay_log_pos(); const_cast<Relay_log_info*>(rli)->clear_flag(Relay_log_info::IN_STMT); } else { const_cast<Relay_log_info*>(rli)->slave_close_thread_tables(thd); } { thd->set_time(&(common_header->when)); thd->set_query(query_arg, q_len_arg); thd->set_query_for_display(query_arg, q_len_arg); thd->set_query_id(next_query_id()); thd->variables.pseudo_thread_id= thread_id; // for temp tables attach_temp_tables_worker(thd, rli); DBUG_PRINT("query",("%s", thd->query().str)); if (ignored_error_code((expected_error= error_code)) || !unexpected_error_code(expected_error)) { if (flags2_inited) /* all bits of thd->variables.option_bits which are 1 in OPTIONS_WRITTEN_TO_BIN_LOG must take their value from flags2. */ thd->variables.option_bits= flags2|(thd->variables.option_bits & ~OPTIONS_WRITTEN_TO_BIN_LOG); /* else, we are in a 3.23/4.0 binlog; we previously received a Rotate_log_event which reset thd->variables.option_bits and sql_mode etc, so nothing to do. */ /* We do not replicate MODE_NO_DIR_IN_CREATE. That is, if the master is a slave which runs with SQL_MODE=MODE_NO_DIR_IN_CREATE, this should not force us to ignore the dir too. Imagine you are a ring of machines, and one has a disk problem so that you temporarily need MODE_NO_DIR_IN_CREATE on this machine; you don't want it to propagate elsewhere (you don't want all slaves to start ignoring the dirs). */ if (sql_mode_inited) thd->variables.sql_mode= (sql_mode_t) ((thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE) | (sql_mode & ~(ulonglong) MODE_NO_DIR_IN_CREATE)); if (charset_inited) { if (rli->cached_charset_compare(charset)) { char *charset_p= charset; // Avoid type-punning warning. /* Verify that we support the charsets found in the event. */ if (!(thd->variables.character_set_client= get_charset(uint2korr(charset_p), MYF(MY_WME))) || !(thd->variables.collation_connection= get_charset(uint2korr(charset+2), MYF(MY_WME))) || !(thd->variables.collation_server= get_charset(uint2korr(charset+4), MYF(MY_WME)))) { /* We updated the thd->variables with nonsensical values (0). Let's set them to something safe (i.e. which avoids crash), and we'll stop with EE_UNKNOWN_CHARSET in compare_errors (unless set to ignore this error). */ set_slave_thread_default_charset(thd, rli); goto compare_errors; } thd->update_charset(); // for the charset change to take effect /* We cannot ask for parsing a statement using a character set without state_maps (parser internal data). */ if (!thd->variables.character_set_client->state_maps) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "character_set cannot be parsed"); thd->is_slave_error= true; goto end; } /* Reset thd->query_string.cs to the newly set value. Note, there is a small flaw here. For a very short time frame if the new charset is different from the old charset and if another thread executes "SHOW PROCESSLIST" after the above thd->set_query() and before this thd->set_query(), and if the current query has some non-ASCII characters, the another thread may see some '?' marks in the PROCESSLIST result. This should be acceptable now. This is a reminder to fix this if any refactoring happens here sometime. */ thd->set_query(query_arg, q_len_arg); thd->reset_query_for_display(); } } if (time_zone_len) { String tmp(time_zone_str, time_zone_len, &my_charset_bin); if (!(thd->variables.time_zone= my_tz_find(thd, &tmp))) { my_error(ER_UNKNOWN_TIME_ZONE, MYF(0), tmp.c_ptr()); thd->variables.time_zone= global_system_variables.time_zone; goto compare_errors; } } if (lc_time_names_number) { if (!(thd->variables.lc_time_names= my_locale_by_number(lc_time_names_number))) { my_printf_error(ER_UNKNOWN_ERROR, "Unknown locale: '%d'", MYF(0), lc_time_names_number); thd->variables.lc_time_names= &my_locale_en_US; goto compare_errors; } } else thd->variables.lc_time_names= &my_locale_en_US; if (charset_database_number) { CHARSET_INFO *cs; if (!(cs= get_charset(charset_database_number, MYF(0)))) { char buf[20]; int10_to_str((int) charset_database_number, buf, -10); my_error(ER_UNKNOWN_COLLATION, MYF(0), buf); goto compare_errors; } thd->variables.collation_database= cs; } else thd->variables.collation_database= thd->db_charset; thd->table_map_for_update= (table_map)table_map_for_update; LEX_STRING user_lex= LEX_STRING(); LEX_STRING host_lex= LEX_STRING(); if (user) { user_lex.str= const_cast<char*>(user); user_lex.length= strlen(user); } if (host) { host_lex.str= const_cast<char*>(host); host_lex.length= strlen(host); } thd->set_invoker(&user_lex, &host_lex); /* Flag if we need to rollback the statement transaction on slave if it by chance succeeds. If we expected a non-zero error code and get nothing and, it is a concurrency issue or ignorable issue, effects of the statement should be rolled back. */ if (expected_error && (ignored_error_code(expected_error) || concurrency_error_code(expected_error))) { thd->variables.option_bits|= OPTION_MASTER_SQL_ERROR; } /* Execute the query (note that we bypass dispatch_command()) */ Parser_state parser_state; if (!parser_state.init(thd, thd->query().str, thd->query().length)) { parser_state.m_input.m_has_digest = true; assert(thd->m_digest == NULL); thd->m_digest= & thd->m_digest_state; assert(thd->m_statement_psi == NULL); thd->m_statement_psi= MYSQL_START_STATEMENT(&thd->m_statement_state, stmt_info_rpl.m_key, thd->db().str, thd->db().length, thd->charset(), NULL); THD_STAGE_INFO(thd, stage_starting); if (thd->m_digest != NULL) thd->m_digest->reset(thd->m_token_array, max_digest_length); mysql_parse(thd, &parser_state); /* Transaction isolation level of pure row based replicated transactions can be optimized to ISO_READ_COMMITTED by the applier when applying the Gtid_log_event. If we are applying a statement other than transaction control ones after having optimized the transactions isolation level, we must warn about the non-standard situation we have found. */ if (is_sbr_logging_format() && thd->variables.tx_isolation > ISO_READ_COMMITTED && thd->tx_isolation == ISO_READ_COMMITTED) { String message; message.append("The isolation level for the current transaction " "was changed to READ_COMMITTED based on the " "assumption that it had only row events and was " "not mixed with statements. " "However, an unexpected statement was found in " "the middle of the transaction." "Query: '"); message.append(thd->query().str); message.append("'"); rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), message.c_ptr()); thd->is_slave_error= true; goto end; } /* Finalize server status flags after executing a statement. */ thd->update_server_status(); log_slow_statement(thd); } thd->variables.option_bits&= ~OPTION_MASTER_SQL_ERROR; /* Resetting the enable_slow_log thd variable. We need to reset it back to the opt_log_slow_slave_statements value after the statement execution (and slow logging is done). It might have changed if the statement was an admin statement (in which case, down in mysql_parse execution thd->enable_slow_log is set to the value of opt_log_slow_admin_statements). */ thd->enable_slow_log= opt_log_slow_slave_statements; } else { /* The query got a really bad error on the master (thread killed etc), which could be inconsistent. Parse it to test the table names: if the replicate-*-do|ignore-table rules say "this query must be ignored" then we exit gracefully; otherwise we warn about the bad error and tell DBA to check/fix it. */ if (mysql_test_parse_for_slave(thd)) clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); /* Can ignore query */ else { rli->report(ERROR_LEVEL, ER_ERROR_ON_MASTER, ER(ER_ERROR_ON_MASTER), expected_error, thd->query().str); thd->is_slave_error= 1; } goto end; } /* If the query was not ignored, it is printed to the general log */ if (!thd->is_error() || thd->get_stmt_da()->mysql_errno() != ER_SLAVE_IGNORED_TABLE) { /* Log the rewritten query if the query was rewritten and the option to log raw was not set. There is an assumption here. We assume that query log events can never have multi-statement queries, thus the parsed statement is the same as the raw one. */ if (opt_general_log_raw || thd->rewritten_query().length() == 0) query_logger.general_log_write(thd, COM_QUERY, thd->query().str, thd->query().length); else query_logger.general_log_write(thd, COM_QUERY, thd->rewritten_query().ptr(), thd->rewritten_query().length()); } compare_errors: /* Parser errors shall be ignored when (GTID) skipping statements */ if (thd->is_error() && thd->get_stmt_da()->mysql_errno() == ER_PARSE_ERROR && gtid_pre_statement_checks(thd) == GTID_STATEMENT_SKIP) { thd->get_stmt_da()->reset_diagnostics_area(); } /* In the slave thread, we may sometimes execute some DROP / * 40005 TEMPORARY * / TABLE that come from parts of binlogs (likely if we use RESET SLAVE or CHANGE MASTER TO), while the temporary table has already been dropped. To ignore such irrelevant "table does not exist errors", we silently clear the error if TEMPORARY was used. */ if (thd->lex->sql_command == SQLCOM_DROP_TABLE && thd->lex->drop_temporary && thd->is_error() && thd->get_stmt_da()->mysql_errno() == ER_BAD_TABLE_ERROR && !expected_error) thd->get_stmt_da()->reset_diagnostics_area(); /* If we expected a non-zero error code, and we don't get the same error code, and it should be ignored or is related to a concurrency issue. */ actual_error= thd->is_error() ? thd->get_stmt_da()->mysql_errno() : 0; DBUG_PRINT("info",("expected_error: %d sql_errno: %d", expected_error, actual_error)); /* If a statement with expected error is received on slave and if the statement is not filtered on the slave, only then compare the expected error with the actual error that happened on slave. */ if ((expected_error && rpl_filter->db_ok(thd->db().str) && expected_error != actual_error && !concurrency_error_code(expected_error)) && !ignored_error_code(actual_error) && !ignored_error_code(expected_error)) { if (!ignored_error_code(ER_INCONSISTENT_ERROR)) { rli->report(ERROR_LEVEL, ER_INCONSISTENT_ERROR, ER(ER_INCONSISTENT_ERROR), ER_THD(thd, expected_error), expected_error, (actual_error ? thd->get_stmt_da()->message_text() : "no error"), actual_error, print_slave_db_safe(db), query_arg); thd->is_slave_error= 1; } else { rli->report(INFORMATION_LEVEL, actual_error, "The actual error and expected error on slave are" " different that will result in ER_INCONSISTENT_ERROR but" " that is passed as an argument to slave_skip_errors so no" " error is thrown. " "The expected error was %s with, Error_code: %d. " "The actual error is %s with ", ER(expected_error), expected_error, thd->get_stmt_da()->message_text()); clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); } } /* If we get the same error code as expected and it is not a concurrency issue, or should be ignored. */ else if ((expected_error == actual_error && !concurrency_error_code(expected_error)) || ignored_error_code(actual_error)) { DBUG_PRINT("info",("error ignored")); if (actual_error && ignored_error_code(actual_error)) { if (actual_error == ER_SLAVE_IGNORED_TABLE) { if (!slave_ignored_err_throttle.log()) rli->report(INFORMATION_LEVEL, actual_error, "Could not execute %s event. Detailed error: %s;" " Error log throttle is enabled. This error will not be" " displayed for next %lu secs. It will be suppressed", get_type_str(), thd->get_stmt_da()->message_text(), (window_size / 1000000)); } else rli->report(INFORMATION_LEVEL, actual_error, "Could not execute %s event. Detailed error: %s;", get_type_str(), thd->get_stmt_da()->message_text()); } clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); thd->killed= THD::NOT_KILLED; } /* Other cases: mostly we expected no error and get one. */ else if (thd->is_slave_error || thd->is_fatal_error) { if (!is_silent_error(thd)) { rli->report(ERROR_LEVEL, actual_error, "Error '%s' on query. Default database: '%s'. Query: '%s'", (actual_error ? thd->get_stmt_da()->message_text() : "unexpected success or fatal error"), print_slave_db_safe(thd->db().str), query_arg); } thd->is_slave_error= 1; } /* TODO: compare the values of "affected rows" around here. Something like: if ((uint32) affected_in_event != (uint32) affected_on_slave) { sql_print_error("Slave: did not get the expected number of affected \ rows running query from master - expected %d, got %d (this numbers \ should have matched modulo 4294967296).", 0, ...); thd->is_slave_error = 1; } We may also want an option to tell the slave to ignore "affected" mismatch. This mismatch could be implemented with a new ER_ code, and to ignore it you would use --slave-skip-errors... To do the comparison we need to know the value of "affected" which the above mysql_parse() computed. And we need to know the value of "affected" in the master's binlog. Both will be implemented later. The important thing is that we now have the format ready to log the values of "affected" in the binlog. So we can release 5.0.0 before effectively logging "affected" and effectively comparing it. */ } /* End of if (db_ok(... */ { /** The following failure injecion works in cooperation with tests setting @@global.debug= 'd,stop_slave_middle_group'. The sql thread receives the killed status and will proceed to shutdown trying to finish incomplete events group. */ // TODO: address the middle-group killing in MTS case DBUG_EXECUTE_IF("stop_slave_middle_group", if (strcmp("COMMIT", query) != 0 && strcmp("BEGIN", query) != 0) { if (thd->get_transaction()->cannot_safely_rollback( Transaction_ctx::SESSION)) const_cast<Relay_log_info*>(rli)->abort_slave= 1; };); } end: if (thd->temporary_tables) detach_temp_tables_worker(thd, rli); /* Probably we have set thd->query, thd->db, thd->catalog to point to places in the data_buf of this event. Now the event is going to be deleted probably, so data_buf will be freed, so the thd->... listed above will be pointers to freed memory. So we must set them to 0, so that those bad pointers values are not later used. Note that "cleanup" queries like automatic DROP TEMPORARY TABLE don't suffer from these assignments to 0 as DROP TEMPORARY TABLE uses the db.table syntax. */ thd->set_catalog(NULL_CSTR); thd->set_db(NULL_CSTR); /* will free the current database */ thd->reset_query(); thd->lex->sql_command= SQLCOM_END; DBUG_PRINT("info", ("end: query= 0")); /* Mark the statement completed. */ MYSQL_END_STATEMENT(thd->m_statement_psi, thd->get_stmt_da()); thd->reset_rewritten_query(); thd->m_statement_psi= NULL; thd->m_digest= NULL; /* As a disk space optimization, future masters will not log an event for LAST_INSERT_ID() if that function returned 0 (and thus they will be able to replace the THD::stmt_depends_on_first_successful_insert_id_in_prev_stmt variable by (THD->first_successful_insert_id_in_prev_stmt > 0) ; with the resetting below we are ready to support that. */ thd->first_successful_insert_id_in_prev_stmt_for_binlog= 0; thd->first_successful_insert_id_in_prev_stmt= 0; thd->stmt_depends_on_first_successful_insert_id_in_prev_stmt= 0; free_root(thd->mem_root,MYF(MY_KEEP_PREALLOC)); DBUG_RETURN(thd->is_slave_error); } int Query_log_event::do_update_pos(Relay_log_info *rli) { int ret= Log_event::do_update_pos(rli); DBUG_EXECUTE_IF("crash_after_commit_and_update_pos", if (!strcmp("COMMIT", query)) { sql_print_information("Crashing crash_after_commit_and_update_pos."); rli->flush_info(true); ha_flush_logs(0); DBUG_SUICIDE(); } ); return ret; } Log_event::enum_skip_reason Query_log_event::do_shall_skip(Relay_log_info *rli) { DBUG_ENTER("Query_log_event::do_shall_skip"); DBUG_PRINT("debug", ("query: %s; q_len: %d", query, static_cast<int>(q_len))); assert(query && q_len > 0); if (rli->slave_skip_counter > 0) { if (strcmp("BEGIN", query) == 0) { thd->variables.option_bits|= OPTION_BEGIN; DBUG_RETURN(Log_event::continue_group(rli)); } if (strcmp("COMMIT", query) == 0 || strcmp("ROLLBACK", query) == 0) { thd->variables.option_bits&= ~OPTION_BEGIN; DBUG_RETURN(Log_event::EVENT_SKIP_COUNT); } } Log_event::enum_skip_reason ret= Log_event::do_shall_skip(rli); DBUG_RETURN(ret); } #endif /** Return the query string pointer (and its size) from a Query log event using only the event buffer (we don't instantiate a Query_log_event object for this). @param buf Pointer to the event buffer. @param length The size of the event buffer. @param description_event The description event of the master which logged the event. @param[out] query The pointer to receive the query pointer. @return The size of the query. */ size_t Query_log_event::get_query(const char *buf, size_t length, const Format_description_log_event *fd_event, char** query) { assert((Log_event_type)buf[EVENT_TYPE_OFFSET] == binary_log::QUERY_EVENT); char db_len; /* size of db name */ uint status_vars_len= 0; /* size of status_vars */ size_t qlen; /* size of the query */ int checksum_size= 0; /* size of trailing checksum */ const char *end_of_query; uint common_header_len= fd_event->common_header_len; uint query_header_len= fd_event->post_header_len[binary_log::QUERY_EVENT-1]; /* Error if the event content is too small */ if (length < (common_header_len + query_header_len)) goto err; /* Skip the header */ buf+= common_header_len; /* Check if there are status variables in the event */ if ((query_header_len - QUERY_HEADER_MINIMAL_LEN) > 0) { status_vars_len= uint2korr(buf + Q_STATUS_VARS_LEN_OFFSET); } /* Check if the event has trailing checksum */ if (fd_event->common_footer->checksum_alg != binary_log::BINLOG_CHECKSUM_ALG_OFF) checksum_size= 4; db_len= (uchar)buf[Q_DB_LEN_OFFSET]; /* Error if the event content is too small */ if (length < (common_header_len + query_header_len + db_len + 1 + status_vars_len + checksum_size)) goto err; *query= (char *)buf + query_header_len + db_len + 1 + status_vars_len; /* Calculate the query length */ end_of_query= buf + (length - common_header_len) - /* we skipped the header */ checksum_size; qlen= end_of_query - *query; return qlen; err: *query= NULL; return 0; } /************************************************************************** Start_log_event_v3 methods **************************************************************************/ #ifndef MYSQL_CLIENT Start_log_event_v3::Start_log_event_v3() : binary_log::Start_event_v3(), Log_event(header(), footer(), Log_event::EVENT_INVALID_CACHE, Log_event::EVENT_INVALID_LOGGING) { is_valid_param= true; } #endif /* Start_log_event_v3::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Start_log_event_v3::pack_info(Protocol *protocol) { char buf[12 + ST_SERVER_VER_LEN + 14 + 22], *pos; pos= my_stpcpy(buf, "Server ver: "); pos= my_stpcpy(pos, server_version); pos= my_stpcpy(pos, ", Binlog ver: "); pos= int10_to_str(binlog_version, pos, 10); protocol->store(buf, (uint) (pos-buf), &my_charset_bin); return 0; } #endif /* Start_log_event_v3::print() */ #ifdef MYSQL_CLIENT void Start_log_event_v3::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { DBUG_ENTER("Start_log_event_v3::print"); IO_CACHE *const head= &print_event_info->head_cache; if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\tStart: binlog v %d, server v %s created ", binlog_version, server_version); print_timestamp(head, NULL); if (created) my_b_printf(head," at startup"); my_b_printf(head, "\n"); if (common_header->flags & LOG_EVENT_BINLOG_IN_USE_F) my_b_printf(head, "# Warning: this binlog is either in use or was not " "closed properly.\n"); } if (is_relay_log_event()) { my_b_printf(head, "# This Format_description_event appears in a relay log " "and was generated by the slave thread.\n"); DBUG_VOID_RETURN; } if (!is_artificial_event() && created) { #ifdef WHEN_WE_HAVE_THE_RESET_CONNECTION_SQL_COMMAND /* This is for mysqlbinlog: like in replication, we want to delete the stale tmp files left by an unclean shutdown of mysqld (temporary tables) and rollback unfinished transaction. Probably this can be done with RESET CONNECTION (syntax to be defined). */ my_b_printf(head,"RESET CONNECTION%s\n", print_event_info->delimiter); #else my_b_printf(head,"ROLLBACK%s\n", print_event_info->delimiter); #endif } if (temp_buf && print_event_info->base64_output_mode != BASE64_OUTPUT_NEVER && !print_event_info->short_form) { if (print_event_info->base64_output_mode != BASE64_OUTPUT_DECODE_ROWS) my_b_printf(head, "BINLOG '\n"); print_base64(head, print_event_info, FALSE); print_event_info->printed_fd_event= TRUE; /* If --skip-gtids is given, the server when it replays the output should generate a new GTID if gtid_mode=ON. However, when the server reads the base64-encoded Format_description_log_event, it will cleverly detect that this is a binlog to be replayed, and act a little bit like the replication thread, in the following sense: if the thread does not see any 'SET GTID_NEXT' statement, it will assume the binlog was created by an old server and try to preserve transactions as anonymous. This is the opposite of what we want when passing the --skip-gtids flag, so therefore we output the following statement. The behavior where the client preserves transactions following a Format_description_log_event as anonymous was introduced in 5.6.16. */ if (print_event_info->skip_gtids) my_b_printf(head, "/*!50616 SET @@SESSION.GTID_NEXT='AUTOMATIC'*/%s\n", print_event_info->delimiter); } DBUG_VOID_RETURN; } #endif /* MYSQL_CLIENT */ /* Start_log_event_v3::Start_log_event_v3() */ Start_log_event_v3::Start_log_event_v3(const char* buf, uint event_len, const Format_description_event *description_event) : binary_log::Start_event_v3(buf, event_len, description_event), Log_event(header(), footer()) { is_valid_param= server_version[0] != 0; if (event_len < (uint)description_event->common_header_len + ST_COMMON_HEADER_LEN_OFFSET) { server_version[0]= 0; return; } buf+= description_event->common_header_len; binlog_version= uint2korr(buf+ST_BINLOG_VER_OFFSET); memcpy(server_version, buf+ST_SERVER_VER_OFFSET, ST_SERVER_VER_LEN); // prevent overrun if log is corrupted on disk server_version[ST_SERVER_VER_LEN-1]= 0; created= uint4korr(buf+ST_CREATED_OFFSET); dont_set_created= 1; } /* Start_log_event_v3::write() */ #ifndef MYSQL_CLIENT bool Start_log_event_v3::write(IO_CACHE* file) { char buff[Binary_log_event::START_V3_HEADER_LEN]; int2store(buff + ST_BINLOG_VER_OFFSET,binlog_version); memcpy(buff + ST_SERVER_VER_OFFSET,server_version,ST_SERVER_VER_LEN); if (!dont_set_created) created= get_time(); int4store(buff + ST_CREATED_OFFSET, static_cast<uint32>(created)); return (write_header(file, sizeof(buff)) || wrapper_my_b_safe_write(file, (uchar*) buff, sizeof(buff)) || write_footer(file)); } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** Start_log_event_v3::do_apply_event() . The master started IMPLEMENTATION - To handle the case where the master died without having time to write DROP TEMPORARY TABLE, DO RELEASE_LOCK (prepared statements' deletion is TODO), we clean up all temporary tables that we got, if we are sure we can (see below). @todo - Remove all active user locks. Guilhem 2003-06: this is true but not urgent: the worst it can cause is the use of a bit of memory for a user lock which will not be used anymore. If the user lock is later used, the old one will be released. In other words, no deadlock problem. */ int Start_log_event_v3::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("Start_log_event_v3::do_apply_event"); int error= 0; switch (binlog_version) { case 3: case 4: /* This can either be 4.x (then a Start_log_event_v3 is only at master startup so we are sure the master has restarted and cleared his temp tables; the event always has 'created'>0) or 5.0 (then we have to test 'created'). */ if (created) { error= close_temporary_tables(thd); cleanup_load_tmpdir(); } else { /* Set all temporary tables thread references to the current thread as they may point to the "old" SQL slave thread in case of its restart. */ TABLE *table; for (table= thd->temporary_tables; table; table= table->next) table->in_use= thd; } break; /* Now the older formats; in that case load_tmpdir is cleaned up by the I/O thread. */ case 1: if (strncmp(rli->get_rli_description_event()->server_version, "3.23.57",7) >= 0 && created) { /* Can distinguish, based on the value of 'created': this event was generated at master startup. */ error= close_temporary_tables(thd); } /* Otherwise, can't distinguish a Start_log_event generated at master startup and one generated by master FLUSH LOGS, so cannot be sure temp tables have to be dropped. So do nothing. */ break; default: /* This case is not expected. It can be either an event corruption or an unsupported binary log version. */ rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "Binlog version not supported"); DBUG_RETURN(1); } DBUG_RETURN(error); } #endif /* defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ /*************************************************************************** Format_description_log_event methods ****************************************************************************/ /** Format_description_log_event 1st ctor. Ctor. Can be used to create the event to write to the binary log (when the server starts or when FLUSH LOGS), or to create artificial events to parse binlogs from MySQL 3.23 or 4.x. When in a client, only the 2nd use is possible. @param binlog_version the binlog version for which we want to build an event. Can be 1 (=MySQL 3.23), 3 (=4.0.x x>=2 and 4.1) or 4 (MySQL 5.0). Note that the old 4.0 (binlog version 2) is not supported; it should not be used for replication with 5.0. @param server_ver a string containing the server version. */ Format_description_log_event:: Format_description_log_event(uint8_t binlog_ver, const char* server_ver) : binary_log::Start_event_v3(binary_log::FORMAT_DESCRIPTION_EVENT), Format_description_event(binlog_ver, (binlog_ver <= 3 || server_ver != 0) ? server_ver : ::server_version) { is_valid_param= header_is_valid() && version_is_valid(); common_header->type_code= binary_log::FORMAT_DESCRIPTION_EVENT; /* We here have the possibility to simulate a master before we changed the table map id to be stored in 6 bytes: when it was stored in 4 bytes (=> post_header_len was 6). This is used to test backward compatibility. This code can be removed after a few months (today is Dec 21st 2005), when we know that the 4-byte masters are not deployed anymore (check with Tomas Ulin first!), and the accompanying test (rpl_row_4_bytes) too. */ DBUG_EXECUTE_IF("old_row_based_repl_4_byte_map_id_master", post_header_len[binary_log::TABLE_MAP_EVENT-1]= post_header_len[binary_log::WRITE_ROWS_EVENT_V1-1]= post_header_len[binary_log::UPDATE_ROWS_EVENT_V1-1]= post_header_len[binary_log::DELETE_ROWS_EVENT_V1-1]= 6;); } /** The problem with this constructor is that the fixed header may have a length different from this version, but we don't know this length as we have not read the Format_description_log_event which says it, yet. This length is in the post-header of the event, but we don't know where the post-header starts. So this type of event HAS to: - either have the header's length at the beginning (in the header, at a fixed position which will never be changed), not in the post-header. That would make the header be "shifted" compared to other events. - or have a header of size LOG_EVENT_MINIMAL_HEADER_LEN (19), in all future versions, so that we know for sure. I (Guilhem) chose the 2nd solution. Rotate has the same constraint (because it is sent before Format_description_log_event). */ Format_description_log_event:: Format_description_log_event(const char* buf, uint event_len, const Format_description_event *description_event) : binary_log::Start_event_v3(buf, event_len, description_event), Format_description_event(buf, event_len, description_event), Start_log_event_v3(buf, event_len, description_event) { is_valid_param= header_is_valid() && version_is_valid(); common_header->type_code= binary_log::FORMAT_DESCRIPTION_EVENT; /* We here have the possibility to simulate a master of before we changed the table map id to be stored in 6 bytes: when it was stored in 4 bytes (=> post_header_len was 6). This is used to test backward compatibility. */ DBUG_EXECUTE_IF("old_row_based_repl_4_byte_map_id_master", post_header_len[binary_log::TABLE_MAP_EVENT-1]= post_header_len[binary_log::WRITE_ROWS_EVENT_V1-1]= post_header_len[binary_log::UPDATE_ROWS_EVENT_V1-1]= post_header_len[binary_log::DELETE_ROWS_EVENT_V1-1]= 6;); } #ifndef MYSQL_CLIENT bool Format_description_log_event::write(IO_CACHE* file) { bool ret; bool no_checksum; /* We don't call Start_log_event_v3::write() because this would make 2 my_b_safe_write(). */ uchar buff[Binary_log_event::FORMAT_DESCRIPTION_HEADER_LEN + BINLOG_CHECKSUM_ALG_DESC_LEN]; size_t rec_size= sizeof(buff); int2store(buff + ST_BINLOG_VER_OFFSET,binlog_version); memcpy((char*) buff + ST_SERVER_VER_OFFSET,server_version,ST_SERVER_VER_LEN); if (!dont_set_created) created= get_time(); int4store(buff + ST_CREATED_OFFSET, static_cast<uint32>(created)); buff[ST_COMMON_HEADER_LEN_OFFSET]= LOG_EVENT_HEADER_LEN; size_t number_of_events; int post_header_len_size = static_cast<int>(post_header_len.size()); if (post_header_len_size == Binary_log_event::LOG_EVENT_TYPES) // Replicating between master and slave with same version. // number_of_events will be same as Binary_log_event::LOG_EVENT_TYPES number_of_events = Binary_log_event::LOG_EVENT_TYPES; else if (post_header_len_size > Binary_log_event::LOG_EVENT_TYPES) /* Replicating between new master and old slave. In that case there won't be any memory issues, as there won't be any out of memory read. */ number_of_events = Binary_log_event::LOG_EVENT_TYPES; else /* Replicating between old master and new slave. In that case it might lead to different number_of_events on master and slave. When the relay log is rotated, the FDE from master is used to create the FDE event on slave, which is being written here. In that case we might end up reading more bytes as post_header_len.size() < Binary_log_event::LOG_EVENT_TYPES; casuing memory issues. */ number_of_events = post_header_len_size; memcpy((char*) buff + ST_COMMON_HEADER_LEN_OFFSET + 1, &post_header_len.front(), number_of_events); /* if checksum is requested record the checksum-algorithm descriptor next to post_header_len vector which will be followed by the checksum value. Master is supposed to trigger checksum computing by binlog_checksum_options, slave does it via marking the event according to FD_queue checksum_alg value. */ compile_time_assert(sizeof(BINLOG_CHECKSUM_ALG_DESC_LEN == 1)); #ifndef NDEBUG common_header->data_written= 0; // to prepare for need_checksum assert #endif buff[Binary_log_event::FORMAT_DESCRIPTION_HEADER_LEN]= need_checksum() ? (uint8) common_footer->checksum_alg : (uint8) binary_log::BINLOG_CHECKSUM_ALG_OFF; /* FD of checksum-aware server is always checksum-equipped, (V) is in, regardless of @@global.binlog_checksum policy. Thereby a combination of (A) == 0, (V) != 0 means it's the checksum-aware server's FD event that heads checksum-free binlog file. Here 0 stands for checksumming OFF to evaluate (V) as 0 is that case. A combination of (A) != 0, (V) != 0 denotes FD of the checksum-aware server heading the checksummed binlog. (A), (V) presence in FD of the checksum-aware server makes the event 1 + 4 bytes bigger comparing to the former FD. */ if ((no_checksum= (common_footer->checksum_alg == binary_log::BINLOG_CHECKSUM_ALG_OFF))) { // Forcing (V) room to fill anyway common_footer->checksum_alg= binary_log::BINLOG_CHECKSUM_ALG_CRC32; } ret= (write_header(file, rec_size) || wrapper_my_b_safe_write(file, buff, rec_size) || write_footer(file)); if (no_checksum) common_footer->checksum_alg= binary_log::BINLOG_CHECKSUM_ALG_OFF; return ret; } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Format_description_log_event::do_apply_event(Relay_log_info const *rli) { int ret= 0; DBUG_ENTER("Format_description_log_event::do_apply_event"); /* As a transaction NEVER spans on 2 or more binlogs: if we have an active transaction at this point, the master died while writing the transaction to the binary log, i.e. while flushing the binlog cache to the binlog. XA guarantees that master has rolled back. So we roll back. Note: this event could be sent by the master to inform us of the format of its binlog; in other words maybe it is not at its original place when it comes to us; we'll know this by checking log_pos ("artificial" events have log_pos == 0). */ if (!thd->rli_fake && !is_artificial_event() && created && thd->get_transaction()->is_active(Transaction_ctx::SESSION)) { /* This is not an error (XA is safe), just an information */ rli->report(INFORMATION_LEVEL, 0, "Rolling back unfinished transaction (no COMMIT " "or ROLLBACK in relay log). A probable cause is that " "the master died while writing the transaction to " "its binary log, thus rolled back too."); const_cast<Relay_log_info*>(rli)->cleanup_context(thd, 1); } /* If this event comes from ourselves, there is no cleaning task to perform, we don't call Start_log_event_v3::do_apply_event() (this was just to update the log's description event). */ if (server_id != (uint32) ::server_id) { /* If the event was not requested by the slave i.e. the master sent it while the slave asked for a position >4, the event will make rli->group_master_log_pos advance. Say that the slave asked for position 1000, and the Format_desc event's end is 96. Then in the beginning of replication rli->group_master_log_pos will be 0, then 96, then jump to first really asked event (which is >96). So this is ok. */ ret= Start_log_event_v3::do_apply_event(rli); } if (!ret) { /* Save the information describing this binlog */ const_cast<Relay_log_info *>(rli)->set_rli_description_event(this); } DBUG_RETURN(ret); } int Format_description_log_event::do_update_pos(Relay_log_info *rli) { if (server_id == (uint32) ::server_id) { /* We only increase the relay log position if we are skipping events and do not touch any group_* variables, nor flush the relay log info. If there is a crash, we will have to re-skip the events again, but that is a minor issue. If we do not skip stepping the group log position (and the server id was changed when restarting the server), it might well be that we start executing at a position that is invalid, e.g., at a Rows_log_event or a Query_log_event preceeded by a Intvar_log_event instead of starting at a Table_map_log_event or the Intvar_log_event respectively. */ rli->inc_event_relay_log_pos(); return 0; } else { return Log_event::do_update_pos(rli); } } Log_event::enum_skip_reason Format_description_log_event::do_shall_skip(Relay_log_info *rli) { return Log_event::EVENT_SKIP_NOT; } #endif /************************************************************************** Load_log_event methods General note about Load_log_event: the binlogging of LOAD DATA INFILE is going to be changed in 5.0 (or maybe in 5.1; not decided yet). However, the 5.0 slave could still have to read such events (from a 4.x master), convert them (which just means maybe expand the header, when 5.0 servers have a UID in events) (remember that whatever is after the header will be like in 4.x, as this event's format is not modified in 5.0 as we will use new types of events to log the new LOAD DATA INFILE features). To be able to read/convert, we just need to not assume that the common header is of length LOG_EVENT_HEADER_LEN (we must use the description event). Note that I (Guilhem) manually tested replication of a big LOAD DATA INFILE between 3.23 and 5.0, and between 4.0 and 5.0, and it works fine (and the positions displayed in SHOW SLAVE STATUS then are fine too). **************************************************************************/ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) uint Load_log_event::get_query_buffer_length() { return //the DB name may double if we escape the quote character 5 + 2*db_len + 3 + 18 + fname_len*4 + 2 + // "LOAD DATA INFILE 'file''" 11 + // "CONCURRENT " 7 + // LOCAL 9 + // " REPLACE or IGNORE " 13 + table_name_len*2 + // "INTO TABLE `table`" 21 + sql_ex.data_info.field_term_len*4 + 2 + // " FIELDS TERMINATED BY 'str'" 23 + sql_ex.data_info.enclosed_len*4 + 2 + // " OPTIONALLY ENCLOSED BY 'str'" 12 + sql_ex.data_info.escaped_len*4 + 2 + // " ESCAPED BY 'str'" 21 + sql_ex.data_info.line_term_len*4 + 2 + // " LINES TERMINATED BY 'str'" 19 + sql_ex.data_info.line_start_len*4 + 2 + // " LINES STARTING BY 'str'" 15 + 22 + // " IGNORE xxx LINES" 3 + (num_fields-1)*2 + field_block_len; // " (field1, field2, ...)" } void Load_log_event::print_query(bool need_db, const char *cs, char *buf, char **end, char **fn_start, char **fn_end) { char quoted_id[1 + NAME_LEN * 2 + 2];//quoted length size_t quoted_id_len= 0; char *pos= buf; if (need_db && db && db_len) { pos= my_stpcpy(pos, "use "); #ifdef MYSQL_SERVER quoted_id_len= my_strmov_quoted_identifier(this->thd, (char *) quoted_id, db, 0); #else quoted_id_len= my_strmov_quoted_identifier((char *) quoted_id, db); #endif quoted_id[quoted_id_len]= '\0'; pos= my_stpcpy(pos, quoted_id); pos= my_stpcpy(pos, "; "); } pos= my_stpcpy(pos, "LOAD DATA "); if (is_concurrent) pos= my_stpcpy(pos, "CONCURRENT "); if (fn_start) *fn_start= pos; if (check_fname_outside_temp_buf()) pos= my_stpcpy(pos, "LOCAL "); pos= my_stpcpy(pos, "INFILE "); pos= pretty_print_str(pos, fname, fname_len); pos= my_stpcpy(pos, " "); if (sql_ex.data_info.opt_flags & REPLACE_FLAG) pos= my_stpcpy(pos, "REPLACE "); else if (sql_ex.data_info.opt_flags & IGNORE_FLAG) pos= my_stpcpy(pos, "IGNORE "); pos= my_stpcpy(pos ,"INTO"); if (fn_end) *fn_end= pos; pos= my_stpcpy(pos ," TABLE "); memcpy(pos, table_name, table_name_len); pos+= table_name_len; if (cs != NULL) { pos= my_stpcpy(pos ," CHARACTER SET "); pos= my_stpcpy(pos , cs); } /* We have to create all optional fields as the default is not empty */ pos= my_stpcpy(pos, " FIELDS TERMINATED BY "); pos= pretty_print_str(pos, sql_ex.data_info.field_term, sql_ex.data_info.field_term_len); if (sql_ex.data_info.opt_flags & OPT_ENCLOSED_FLAG) pos= my_stpcpy(pos, " OPTIONALLY "); pos= my_stpcpy(pos, " ENCLOSED BY "); pos= pretty_print_str(pos, sql_ex.data_info.enclosed, sql_ex.data_info.enclosed_len); pos= my_stpcpy(pos, " ESCAPED BY "); pos= pretty_print_str(pos, sql_ex.data_info.escaped, sql_ex.data_info.escaped_len); pos= my_stpcpy(pos, " LINES TERMINATED BY "); pos= pretty_print_str(pos, sql_ex.data_info.line_term, sql_ex.data_info.line_term_len); if (sql_ex.data_info.line_start_len) { pos= my_stpcpy(pos, " STARTING BY "); pos= pretty_print_str(pos, sql_ex.data_info.line_start, sql_ex.data_info.line_start_len); } if ((long) skip_lines > 0) { pos= my_stpcpy(pos, " IGNORE "); pos= longlong10_to_str((longlong) skip_lines, pos, 10); pos= my_stpcpy(pos," LINES "); } if (num_fields) { uint i; const char *field= fields; pos= my_stpcpy(pos, " ("); for (i = 0; i < num_fields; i++) { if (i) { *pos++= ' '; *pos++= ','; } quoted_id_len= my_strmov_quoted_identifier(this->thd, quoted_id, field, 0); memcpy(pos, quoted_id, quoted_id_len-1); } *pos++= ')'; } *end= pos; } int Load_log_event::pack_info(Protocol *protocol) { char *buf, *end; if (!(buf= (char*) my_malloc(key_memory_log_event, get_query_buffer_length(), MYF(MY_WME)))) return 1; print_query(TRUE, NULL, buf, &end, 0, 0); protocol->store(buf, end-buf, &my_charset_bin); my_free(buf); return 0; } #endif /* defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ #ifndef MYSQL_CLIENT /* Load_log_event::write_data_header() */ bool Load_log_event::write_data_header(IO_CACHE* file) { char buf[Binary_log_event::LOAD_HEADER_LEN]; int4store(buf + L_THREAD_ID_OFFSET, slave_proxy_id); int4store(buf + L_EXEC_TIME_OFFSET, exec_time); int4store(buf + L_SKIP_LINES_OFFSET, skip_lines); buf[L_TBL_LEN_OFFSET] = (char)table_name_len; buf[L_DB_LEN_OFFSET] = (char)db_len; int4store(buf + L_NUM_FIELDS_OFFSET, num_fields); return my_b_safe_write(file, (uchar*)buf, Binary_log_event::LOAD_HEADER_LEN) != 0; } /* Load_log_event::write_data_body() */ bool Load_log_event::write_data_body(IO_CACHE* file) { if (sql_ex.write_data(file)) return 1; if (num_fields && fields && field_lens) { if (my_b_safe_write(file, (uchar*)field_lens, num_fields) || my_b_safe_write(file, (uchar*)fields, field_block_len)) return 1; } return (my_b_safe_write(file, (uchar*)table_name, table_name_len + 1) || my_b_safe_write(file, (uchar*)db, db_len + 1) || my_b_safe_write(file, (uchar*)fname, fname_len)); } /* Load_log_event::Load_log_event() */ Load_log_event::Load_log_event(THD *thd_arg, sql_exchange *ex, const char *db_arg, const char *table_name_arg, List<Item> &fields_arg, bool is_concurrent_arg, enum enum_duplicates handle_dup, bool ignore, bool using_trans) : binary_log::Load_event(), Log_event(thd_arg, thd_arg->thread_specific_used ? LOG_EVENT_THREAD_SPECIFIC_F : 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) { thread_id= thd_arg->thread_id(); slave_proxy_id= thd_arg->variables.pseudo_thread_id; table_name= table_name_arg ? table_name_arg : ""; db= db_arg; fname= ex->file_name; local_fname= FALSE; is_concurrent= is_concurrent_arg; /* exec_time calculation has changed to use the same method that is used to fill out "thd_arg->start_time" */ struct timeval end_time; ulonglong micro_end_time= my_micro_time(); my_micro_time_to_timeval(micro_end_time, &end_time); exec_time= end_time.tv_sec - thd_arg->start_time.tv_sec; /* db can never be a zero pointer in 4.0 */ db_len = strlen(db); table_name_len = strlen(table_name); fname_len = (fname) ? strlen(fname) : 0; sql_ex.data_info.field_term = ex->field.field_term->ptr(); sql_ex.data_info.field_term_len = (uint8) ex->field.field_term->length(); sql_ex.data_info.enclosed = ex->field.enclosed->ptr(); sql_ex.data_info.enclosed_len = (uint8) ex->field.enclosed->length(); sql_ex.data_info.line_term = ex->line.line_term->ptr(); sql_ex.data_info.line_term_len = (uint8) ex->line.line_term->length(); sql_ex.data_info.line_start = ex->line.line_start->ptr(); sql_ex.data_info.line_start_len = (uint8) ex->line.line_start->length(); sql_ex.data_info.escaped = (char*) ex->field.escaped->ptr(); sql_ex.data_info.escaped_len = (uint8) ex->field.escaped->length(); sql_ex.data_info.opt_flags = 0; sql_ex.data_info.cached_new_format = -1; if (ex->dumpfile) sql_ex.data_info.opt_flags|= DUMPFILE_FLAG; if (ex->field.opt_enclosed) sql_ex.data_info.opt_flags|= OPT_ENCLOSED_FLAG; sql_ex.data_info.empty_flags= 0; switch (handle_dup) { case DUP_REPLACE: sql_ex.data_info.opt_flags|= REPLACE_FLAG; break; case DUP_UPDATE: // Impossible here case DUP_ERROR: break; } if (ignore) sql_ex.data_info.opt_flags|= IGNORE_FLAG; if (!ex->field.field_term->length()) sql_ex.data_info.empty_flags |= FIELD_TERM_EMPTY; if (!ex->field.enclosed->length()) sql_ex.data_info.empty_flags |= ENCLOSED_EMPTY; if (!ex->line.line_term->length()) sql_ex.data_info.empty_flags |= LINE_TERM_EMPTY; if (!ex->line.line_start->length()) sql_ex.data_info.empty_flags |= LINE_START_EMPTY; if (!ex->field.escaped->length()) sql_ex.data_info.empty_flags |= ESCAPED_EMPTY; skip_lines = ex->skip_lines; List_iterator<Item> li(fields_arg); field_lens_buf.length(0); fields_buf.length(0); Item* item; while ((item = li++)) { num_fields++; uchar len= (uchar) item->item_name.length(); field_block_len += len + 1; fields_buf.append(item->item_name.ptr(), len + 1); field_lens_buf.append((char*)&len, 1); } field_lens = (const uchar*)field_lens_buf.ptr(); fields = fields_buf.ptr(); if (table_name != 0) is_valid_param= true; if (sql_ex.data_info.new_format()) common_header->type_code= binary_log::NEW_LOAD_EVENT; else common_header->type_code= binary_log::LOAD_EVENT; } #endif /* !MYSQL_CLIENT */ /** @note The caller must do buf[event_len] = 0 before he starts using the constructed event. */ Load_log_event::Load_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Load_event(buf, event_len, description_event), Log_event(header(), footer()) { DBUG_ENTER("Load_log_event"); if (table_name != 0) is_valid_param= true; thread_id= slave_proxy_id; if (event_len) { /** We need to set exec_time here, which is ued to calcutate seconds behind master on the slave. */ exec_time= load_exec_time; /* I (Guilhem) manually tested replication of LOAD DATA INFILE for 3.23->5.0, 4.0->5.0 and 5.0->5.0 and it works. */ sql_ex.data_info= sql_ex_data; } if (sql_ex.data_info.new_format()) common_header->type_code= binary_log::NEW_LOAD_EVENT; else common_header->type_code= binary_log::LOAD_EVENT; DBUG_VOID_RETURN; } /* Load_log_event::print() */ #ifdef MYSQL_CLIENT void Load_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { print(file, print_event_info, 0); } void Load_log_event::print(FILE* file_arg, PRINT_EVENT_INFO* print_event_info, bool commented) { IO_CACHE *const head= &print_event_info->head_cache; size_t id_len= 0; char str_buf[1 + 2*FN_REFLEN + 2]; DBUG_ENTER("Load_log_event::print"); if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\tQuery\tthread_id=%u\texec_time=%ld\n", thread_id, exec_time); } bool different_db= 1; if (db) { /* If the database is different from the one of the previous statement, we need to print the "use" command, and we update the last_db. But if commented, the "use" is going to be commented so we should not update the last_db. */ if ((different_db= memcmp(print_event_info->db, db, db_len + 1)) && !commented) memcpy(print_event_info->db, db, db_len + 1); } if (db && db[0] && different_db) { #ifdef MYSQL_SERVER id_len= my_strmov_quoted_identifier(this->thd, str_buf, db, 0); #else id_len= my_strmov_quoted_identifier(str_buf, db); #endif str_buf[id_len]= '\0'; my_b_printf(head, "%suse %s%s\n", commented ? "# " : "", str_buf, print_event_info->delimiter); } if (common_header->flags & LOG_EVENT_THREAD_SPECIFIC_F) my_b_printf(head,"%sSET @@session.pseudo_thread_id=%lu%s\n", commented ? "# " : "", (ulong)thread_id, print_event_info->delimiter); my_b_printf(head, "%sLOAD DATA ", commented ? "# " : ""); if (check_fname_outside_temp_buf()) my_b_printf(head, "LOCAL "); my_b_printf(head, "INFILE '%-*s' ", static_cast<int>(fname_len), fname); if (sql_ex.data_info.opt_flags & REPLACE_FLAG) my_b_printf(head,"REPLACE "); else if (sql_ex.data_info.opt_flags & IGNORE_FLAG) my_b_printf(head,"IGNORE "); #ifdef MYSQL_SERVER id_len= my_strmov_quoted_identifier(this->thd, str_buf, table_name, 0); #else id_len= my_strmov_quoted_identifier(str_buf, table_name); #endif str_buf[id_len]= '\0'; my_b_printf(head, "INTO TABLE %s", str_buf); my_b_printf(head, " FIELDS TERMINATED BY "); pretty_print_str(head, sql_ex.data_info.field_term, sql_ex.data_info.field_term_len); if (sql_ex.data_info.opt_flags & OPT_ENCLOSED_FLAG) my_b_printf(head," OPTIONALLY "); my_b_printf(head, " ENCLOSED BY "); pretty_print_str(head, sql_ex.data_info.enclosed, sql_ex.data_info.enclosed_len); my_b_printf(head, " ESCAPED BY "); pretty_print_str(head, sql_ex.data_info.escaped, sql_ex.data_info.escaped_len); my_b_printf(head," LINES TERMINATED BY "); pretty_print_str(head, sql_ex.data_info.line_term, sql_ex.data_info.line_term_len); if (sql_ex.data_info.line_start) { my_b_printf(head," STARTING BY "); pretty_print_str(head, sql_ex.data_info.line_start, sql_ex.data_info.line_start_len); } if ((long) skip_lines > 0) my_b_printf(head, " IGNORE %ld LINES", (long) skip_lines); if (num_fields) { uint i; const char* field = fields; my_b_printf(head, " ("); for (i = 0; i < num_fields; i++) { if (i) my_b_printf(head, ","); id_len= my_strmov_quoted_identifier((char *) str_buf, field); str_buf[id_len]= '\0'; my_b_printf(head, "%s", str_buf); field += field_lens[i] + 1; } my_b_printf(head, ")"); } my_b_printf(head, "%s\n", print_event_info->delimiter); DBUG_VOID_RETURN; } #endif /* MYSQL_CLIENT */ #ifndef MYSQL_CLIENT /** Load_log_event::set_fields() @note This function can not use the member variable for the database, since LOAD DATA INFILE on the slave can be for a different database than the current one. This is the reason for the affected_db argument to this method. */ void Load_log_event::set_fields(const char* affected_db, List<Item> &field_list, Name_resolution_context *context) { uint i; const char* field = fields; for (i= 0; i < num_fields; i++) { field_list.push_back(new Item_field(context, affected_db, table_name, field)); field+= field_lens[i] + 1; } } #endif /* !MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** Does the data loading job when executing a LOAD DATA on the slave. @param net @param rli @param use_rli_only_for_errors If set to 1, rli is provided to Load_log_event::exec_event only for this function to have rli->get_rpl_log_name and rli->last_slave_error, both being used by error reports. If set to 0, rli is provided for full use, i.e. for error reports and position advancing. @todo fix this; this can be done by testing rules in Create_file_log_event::exec_event() and then discarding Append_block and al. @todo this is a bug - this needs to be moved to the I/O thread @retval 0 Success @retval 1 Failure */ int Load_log_event::do_apply_event(NET* net, Relay_log_info const *rli, bool use_rli_only_for_errors) { assert(thd->query().str == NULL); thd->reset_query(); // Should not be needed set_thd_db(thd, db, db_len); thd->is_slave_error= 0; clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); /* see Query_log_event::do_apply_event() and BUG#13360 */ assert(!rli->m_table_map.count()); /* Usually lex_start() is called by mysql_parse(), but we need it here as the present method does not call mysql_parse(). */ lex_start(thd); thd->lex->local_file= local_fname; mysql_reset_thd_for_next_command(thd); /* It is possible that the thread does not hold anonymous GTID ownership here, e.g. in case this is the first event of a relay log. */ gtid_reacquire_ownership_if_anonymous(thd); /* We test replicate_*_db rules. Note that we have already prepared the file to load, even if we are going to ignore and delete it now. So it is possible that we did a lot of disk writes for nothing. In other words, a big LOAD DATA INFILE on the master will still consume a lot of space on the slave (space in the relay log + space of temp files: twice the space of the file to load...) even if it will finally be ignored. TODO: fix this; this can be done by testing rules in Create_file_log_event::do_apply_event() and then discarding Append_block and al. Another way is do the filtering in the I/O thread (more efficient: no disk writes at all). */ if (rpl_filter->db_ok(thd->db().str)) { thd->set_time(&(common_header->when)); thd->set_query_id(next_query_id()); assert(!thd->get_stmt_da()->is_set()); TABLE_LIST tables; char table_buf[NAME_LEN + 1]; my_stpcpy(table_buf, table_name); if (lower_case_table_names) my_casedn_str(system_charset_info, table_buf); tables.init_one_table(thd->strmake(thd->db().str, thd->db().length), thd->db().length, table_buf, strlen(table_buf), table_buf, TL_WRITE); tables.updating= 1; // the table will be opened in mysql_load if (rpl_filter->is_on() && !rpl_filter->tables_ok(thd->db().str, &tables)) { // TODO: this is a bug - this needs to be moved to the I/O thread if (net) skip_load_data_infile(net); } else { char llbuff[22]; char *end; enum enum_duplicates handle_dup; char *load_data_query; /* Forge LOAD DATA INFILE query which will be used in SHOW PROCESS LIST and written to slave's binlog if binlogging is on. */ if (!(load_data_query= (char *)thd->alloc(get_query_buffer_length() + 1))) { /* This will set thd->fatal_error in case of OOM. So we surely will notice that something is wrong. */ goto error; } print_query(FALSE, NULL, load_data_query, &end, NULL, NULL); *end= 0; thd->set_query(load_data_query, static_cast<size_t>(end - load_data_query)); if (sql_ex.data_info.opt_flags & REPLACE_FLAG) handle_dup= DUP_REPLACE; else if (sql_ex.data_info.opt_flags & IGNORE_FLAG) { thd->lex->set_ignore(true); handle_dup= DUP_ERROR; } else { /* When replication is running fine, if it was DUP_ERROR on the master then we could choose IGNORE here, because if DUP_ERROR suceeded on master, and data is identical on the master and slave, then there should be no uniqueness errors on slave, so IGNORE is the same as DUP_ERROR. But in the unlikely case of uniqueness errors (because the data on the master and slave happen to be different (user error or bug), we want LOAD DATA to print an error message on the slave to discover the problem. If reading from net (a 3.23 master), mysql_load() will change this to IGNORE. */ handle_dup= DUP_ERROR; } /* We need to set thd->lex->sql_command and thd->lex->duplicates since InnoDB tests these variables to decide if this is a LOAD DATA ... REPLACE INTO ... statement even though mysql_parse() is not called. This is not needed in 5.0 since there the LOAD DATA ... statement is replicated using mysql_parse(), which sets the thd->lex fields correctly. */ thd->lex->sql_command= SQLCOM_LOAD; thd->lex->duplicates= handle_dup; sql_exchange ex((char*)fname, sql_ex.data_info.opt_flags & DUMPFILE_FLAG); String field_term(sql_ex.data_info.field_term, sql_ex.data_info.field_term_len,log_cs); String enclosed(sql_ex.data_info.enclosed, sql_ex.data_info.enclosed_len,log_cs); String line_term(sql_ex.data_info.line_term, sql_ex.data_info.line_term_len,log_cs); String line_start(sql_ex.data_info.line_start, sql_ex.data_info.line_start_len,log_cs); String escaped(sql_ex.data_info.escaped, sql_ex.data_info.escaped_len, log_cs); const String empty_str("", 0, log_cs); ex.field.field_term= &field_term; ex.field.enclosed= &enclosed; ex.line.line_term= &line_term; ex.line.line_start= &line_start; ex.field.escaped= &escaped; ex.field.opt_enclosed= (sql_ex.data_info.opt_flags & OPT_ENCLOSED_FLAG); if (sql_ex.data_info.empty_flags & FIELD_TERM_EMPTY) ex.field.field_term= &empty_str; ex.skip_lines= skip_lines; List<Item> field_list; thd->lex->select_lex->context.resolve_in_table_list_only(&tables); set_fields(tables.db, field_list, &thd->lex->select_lex->context); thd->variables.pseudo_thread_id= thread_id; if (net) { // mysql_load will use thd->net to read the file thd->get_protocol_classic()->set_vio(net->vio); // Make sure the client does not get confused about the packet sequence thd->get_protocol_classic()->set_pkt_nr(net->pkt_nr); } /* It is safe to use tmp_list twice because we are not going to update it inside mysql_load(). */ List<Item> tmp_list; /* Prepare column privilege check for LOAD statement. This is necessary because the replication code for LOAD bypasses regular privilege checking, which is done by check_one_table_access() in regular code path. We can assign INSERT privileges to the table since the slave thread operates with all privileges. */ tables.set_privileges(INSERT_ACL); tables.set_want_privilege(INSERT_ACL); if (open_temporary_tables(thd, &tables) || mysql_load(thd, &ex, &tables, field_list, tmp_list, tmp_list, handle_dup, net != 0)) thd->is_slave_error= 1; if (thd->cuted_fields) { /* log_pos is the position of the LOAD event in the master log */ sql_print_warning("Slave: load data infile on table '%s' at " "log position %s in log '%s' produced %ld " "warning(s). Default database: '%s'", (char*) table_name, llstr(common_header->log_pos,llbuff), const_cast<Relay_log_info*>(rli)->get_rpl_log_name(), (ulong) thd->cuted_fields, print_slave_db_safe(thd->db().str)); } if (net) { net->pkt_nr= thd->get_protocol_classic()->get_pkt_nr(); } } } else { /* We will just ask the master to send us /dev/null if we do not want to load the data. TODO: this a bug - needs to be done in I/O thread */ if (net) skip_load_data_infile(net); } error: thd->get_protocol_classic()->set_vio(NULL); const char *remember_db= thd->db().str; thd->set_catalog(NULL_CSTR); thd->set_db(NULL_CSTR); /* will free the current database */ thd->reset_query(); thd->get_stmt_da()->set_overwrite_status(true); thd->is_error() ? trans_rollback_stmt(thd) : trans_commit_stmt(thd); thd->get_stmt_da()->set_overwrite_status(false); close_thread_tables(thd); /* - If transaction rollback was requested due to deadlock perform it and release metadata locks. - If inside a multi-statement transaction, defer the release of metadata locks until the current transaction is either committed or rolled back. This prevents other statements from modifying the table for the entire duration of this transaction. This provides commit ordering and guarantees serializability across multiple transactions. - If in autocommit mode, or outside a transactional context, automatically release metadata locks of the current statement. */ if (thd->transaction_rollback_request) { trans_rollback_implicit(thd); thd->mdl_context.release_transactional_locks(); } else if (! thd->in_multi_stmt_transaction_mode()) thd->mdl_context.release_transactional_locks(); else thd->mdl_context.release_statement_locks(); DBUG_EXECUTE_IF("LOAD_DATA_INFILE_has_fatal_error", thd->is_slave_error= 0; thd->is_fatal_error= 1;); if (thd->is_slave_error) { /* this err/sql_errno code is copy-paste from net_send_error() */ const char *err; int sql_errno; if (thd->is_error()) { err= thd->get_stmt_da()->message_text(); sql_errno= thd->get_stmt_da()->mysql_errno(); } else { sql_errno=ER_UNKNOWN_ERROR; err=ER(sql_errno); } rli->report(ERROR_LEVEL, sql_errno,"\ Error '%s' running LOAD DATA INFILE on table '%s'. Default database: '%s'", err, (char*)table_name, print_slave_db_safe(remember_db)); free_root(thd->mem_root,MYF(MY_KEEP_PREALLOC)); return 1; } free_root(thd->mem_root,MYF(MY_KEEP_PREALLOC)); if (thd->is_fatal_error) { char buf[256]; my_snprintf(buf, sizeof(buf), "Running LOAD DATA INFILE on table '%-.64s'." " Default database: '%-.64s'", (char*)table_name, print_slave_db_safe(remember_db)); rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER(ER_SLAVE_FATAL_ERROR), buf); return 1; } return ( use_rli_only_for_errors ? 0 : Log_event::do_apply_event(rli) ); } #endif /************************************************************************** Rotate_log_event methods **************************************************************************/ /* Rotate_log_event::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Rotate_log_event::pack_info(Protocol *protocol) { char buf1[256], buf[22]; String tmp(buf1, sizeof(buf1), log_cs); tmp.length(0); tmp.append(new_log_ident, ident_len); tmp.append(STRING_WITH_LEN(";pos=")); tmp.append(llstr(pos,buf)); protocol->store(tmp.ptr(), tmp.length(), &my_charset_bin); return 0; } #endif /* Rotate_log_event::print() */ #ifdef MYSQL_CLIENT void Rotate_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { char buf[22]; IO_CACHE *const head= &print_event_info->head_cache; if (print_event_info->short_form) return; print_header(head, print_event_info, FALSE); my_b_printf(head, "\tRotate to "); if (new_log_ident) my_b_write(head, (uchar*) new_log_ident, (uint)ident_len); my_b_printf(head, " pos: %s\n", llstr(pos, buf)); } #endif /* MYSQL_CLIENT */ /* Rotate_log_event::Rotate_log_event() (2 constructors) */ #ifndef MYSQL_CLIENT Rotate_log_event::Rotate_log_event(const char* new_log_ident_arg, size_t ident_len_arg, ulonglong pos_arg, uint flags_arg) : binary_log::Rotate_event(new_log_ident_arg, ident_len_arg, flags_arg, pos_arg), Log_event(header(), footer(), Log_event::EVENT_NO_CACHE, Log_event::EVENT_IMMEDIATE_LOGGING) { #ifndef NDEBUG DBUG_ENTER("Rotate_log_event::Rotate_log_event(...,flags)"); #endif new_log_ident= new_log_ident_arg; pos= pos_arg; ident_len= ident_len_arg ? ident_len_arg : (uint) strlen(new_log_ident_arg); flags= flags_arg; #ifndef NDEBUG char buff[22]; DBUG_PRINT("enter",("new_log_ident: %s pos: %s flags: %lu", new_log_ident_arg, llstr(pos_arg, buff), (ulong) flags)); #endif if (flags & DUP_NAME) new_log_ident= my_strndup(key_memory_log_event, new_log_ident_arg, ident_len, MYF(MY_WME)); if (new_log_ident != 0) is_valid_param= true; if (flags & RELAY_LOG) set_relay_log_event(); DBUG_VOID_RETURN; } #endif Rotate_log_event::Rotate_log_event(const char* buf, uint event_len, const Format_description_event* description_event) : binary_log::Rotate_event(buf, event_len, description_event), Log_event(header(), footer()) { DBUG_ENTER("Rotate_log_event::Rotate_log_event(char*,...)"); if (new_log_ident != 0) is_valid_param= true; DBUG_PRINT("debug", ("new_log_ident: '%s'", new_log_ident)); DBUG_VOID_RETURN; } /* Rotate_log_event::write() */ #ifndef MYSQL_CLIENT bool Rotate_log_event::write(IO_CACHE* file) { char buf[Binary_log_event::ROTATE_HEADER_LEN]; int8store(buf + R_POS_OFFSET, pos); return (write_header(file, Binary_log_event::ROTATE_HEADER_LEN + ident_len) || wrapper_my_b_safe_write(file, (uchar*) buf, Binary_log_event::ROTATE_HEADER_LEN) || wrapper_my_b_safe_write(file, (uchar*) new_log_ident, (uint) ident_len) || write_footer(file)); } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /* Got a rotate log event from the master. This is mainly used so that we can later figure out the logname and position for the master. We can't rotate the slave's BINlog as this will cause infinitive rotations in a A -> B -> A setup. The NOTES below is a wrong comment which will disappear when 4.1 is merged. This must only be called from the Slave SQL thread, since it calls flush_relay_log_info(). @retval 0 ok */ int Rotate_log_event::do_update_pos(Relay_log_info *rli) { int error= 0; DBUG_ENTER("Rotate_log_event::do_update_pos"); #ifndef NDEBUG char buf[32]; #endif DBUG_PRINT("info", ("server_id=%lu; ::server_id=%lu", (ulong) this->server_id, (ulong) ::server_id)); DBUG_PRINT("info", ("new_log_ident: %s", this->new_log_ident)); DBUG_PRINT("info", ("pos: %s", llstr(this->pos, buf))); /* If we are in a transaction or in a group: the only normal case is when the I/O thread was copying a big transaction, then it was stopped and restarted: we have this in the relay log: BEGIN ... ROTATE (a fake one) ... COMMIT or ROLLBACK In that case, we don't want to touch the coordinates which correspond to the beginning of the transaction. Starting from 5.0.0, there also are some rotates from the slave itself, in the relay log, which shall not change the group positions. */ /* The way we check if SQL thread is currently in a group is different for STS and MTS. */ bool in_group = rli->is_parallel_exec() ? (rli->mts_group_status == Relay_log_info::MTS_IN_GROUP) : rli->is_in_group(); if ((server_id != ::server_id || rli->replicate_same_server_id) && !is_relay_log_event() && !in_group) { if (!is_mts_db_partitioned(rli) && (server_id != ::server_id || rli->replicate_same_server_id)) { // force the coordinator to start a new binlog segment. static_cast<Mts_submode_logical_clock*> (rli->current_mts_submode)->start_new_group(); } if (rli->is_parallel_exec()) { /* Rotate events are special events that are handled as a synchronization point. For that reason, the checkpoint routine is being called here. */ if ((error= mts_checkpoint_routine(rli, 0, false, true/*need_data_lock=true*/))) goto err; } mysql_mutex_lock(&rli->data_lock); DBUG_PRINT("info", ("old group_master_log_name: '%s' " "old group_master_log_pos: %lu", rli->get_group_master_log_name(), (ulong) rli->get_group_master_log_pos())); memcpy((void *)rli->get_group_master_log_name(), new_log_ident, ident_len + 1); rli->notify_group_master_log_name_update(); if ((error= rli->inc_group_relay_log_pos(pos, false/*need_data_lock=false*/))) { mysql_mutex_unlock(&rli->data_lock); goto err; } DBUG_PRINT("info", ("new group_master_log_name: '%s' " "new group_master_log_pos: %lu", rli->get_group_master_log_name(), (ulong) rli->get_group_master_log_pos())); mysql_mutex_unlock(&rli->data_lock); if (rli->is_parallel_exec()) { bool real_event= server_id && !is_artificial_event(); rli->reset_notified_checkpoint(0, real_event ? common_header->when.tv_sec + (time_t) exec_time : 0, true/*need_data_lock=true*/, real_event? true : false); } /* Reset thd->variables.option_bits and sql_mode etc, because this could be the signal of a master's downgrade from 5.0 to 4.0. However, no need to reset rli_description_event: indeed, if the next master is 5.0 (even 5.0.1) we will soon get a Format_desc; if the next master is 4.0 then the events are in the slave's format (conversion). */ set_slave_thread_options(thd); set_slave_thread_default_charset(thd, rli); thd->variables.sql_mode= global_system_variables.sql_mode; thd->variables.auto_increment_increment= thd->variables.auto_increment_offset= 1; /* Rotate_log_events are generated on Slaves with server_id=0 for all the ignored events, so that the positions in the repository is updated properly even for ignored events. This kind of Rotate_log_event is generated when 1) the event is generated on the same host and reached due to circular replication (server_id == ::server_id) 2) the event is from the host which is listed in ignore_server_ids 3) IO thread is receiving HEARTBEAT event from the master 4) IO thread is receiving PREVIOUS_GTID_LOG_EVENT from the master. We have to free thd's mem_root here after we update the positions in the repository table. Otherwise, imagine a situation where Slave is keep getting ignored events only and no other (non-ignored) events from the Master, Slave never executes free_root (that generally happens from Query_log_event::do_apply_event or Rows_log_event::do_apply_event when they find end of the group event). */ if (server_id == 0) free_root(thd->mem_root, MYF(MY_KEEP_PREALLOC)); } else rli->inc_event_relay_log_pos(); err: DBUG_RETURN(error); } Log_event::enum_skip_reason Rotate_log_event::do_shall_skip(Relay_log_info *rli) { enum_skip_reason reason= Log_event::do_shall_skip(rli); switch (reason) { case Log_event::EVENT_SKIP_NOT: case Log_event::EVENT_SKIP_COUNT: return Log_event::EVENT_SKIP_NOT; case Log_event::EVENT_SKIP_IGNORE: return Log_event::EVENT_SKIP_IGNORE; } assert(0); return Log_event::EVENT_SKIP_NOT; // To keep compiler happy } #endif /************************************************************************** Intvar_log_event methods **************************************************************************/ /* Intvar_log_event::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Intvar_log_event::pack_info(Protocol *protocol) { char buf[256], *pos; pos= strmake(buf, (get_var_type_string()).c_str(), sizeof(buf)-23); *pos++= '='; pos= longlong10_to_str(val, pos, -10); protocol->store(buf, (uint) (pos-buf), &my_charset_bin); return 0; } #endif /* Intvar_log_event::Intvar_log_event() */ Intvar_log_event::Intvar_log_event(const char* buf, const Format_description_event* description_event) : binary_log::Intvar_event(buf, description_event), Log_event(header(), footer()) { is_valid_param= true; } /* Intvar_log_event::write() */ #ifndef MYSQL_CLIENT bool Intvar_log_event::write(IO_CACHE* file) { uchar buf[9]; buf[I_TYPE_OFFSET]= (uchar) type; int8store(buf + I_VAL_OFFSET, val); return (write_header(file, sizeof(buf)) || wrapper_my_b_safe_write(file, buf, sizeof(buf)) || write_footer(file)); } #endif /* Intvar_log_event::print() */ #ifdef MYSQL_CLIENT void Intvar_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { char llbuff[22]; const char *msg= NULL; IO_CACHE *const head= &print_event_info->head_cache; if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\tIntvar\n"); } my_b_printf(head, "SET "); switch (type) { case LAST_INSERT_ID_EVENT: msg="LAST_INSERT_ID"; break; case INSERT_ID_EVENT: msg="INSERT_ID"; break; case INVALID_INT_EVENT: default: // cannot happen msg="INVALID_INT"; break; } my_b_printf(head, "%s=%s%s\n", msg, llstr(val,llbuff), print_event_info->delimiter); } #endif #if defined(HAVE_REPLICATION)&& !defined(MYSQL_CLIENT) /* Intvar_log_event::do_apply_event() */ int Intvar_log_event::do_apply_event(Relay_log_info const *rli) { /* We are now in a statement until the associated query log event has been processed. */ const_cast<Relay_log_info*>(rli)->set_flag(Relay_log_info::IN_STMT); if (rli->deferred_events_collecting) return rli->deferred_events->add(this); switch (type) { case LAST_INSERT_ID_EVENT: thd->first_successful_insert_id_in_prev_stmt= val; thd->substitute_null_with_insert_id= TRUE; break; case INSERT_ID_EVENT: thd->force_one_auto_inc_interval(val); break; } return 0; } int Intvar_log_event::do_update_pos(Relay_log_info *rli) { rli->inc_event_relay_log_pos(); return 0; } Log_event::enum_skip_reason Intvar_log_event::do_shall_skip(Relay_log_info *rli) { /* It is a common error to set the slave skip counter to 1 instead of 2 when recovering from an insert which used a auto increment, rand, or user var. Therefore, if the slave skip counter is 1, we just say that this event should be skipped by ignoring it, meaning that we do not change the value of the slave skip counter since it will be decreased by the following insert event. */ return continue_group(rli); } #endif /************************************************************************** Rand_log_event methods **************************************************************************/ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Rand_log_event::pack_info(Protocol *protocol) { char buf1[256], *pos; pos= my_stpcpy(buf1,"rand_seed1="); pos= int10_to_str((long) seed1, pos, 10); pos= my_stpcpy(pos, ",rand_seed2="); pos= int10_to_str((long) seed2, pos, 10); protocol->store(buf1, (uint) (pos-buf1), &my_charset_bin); return 0; } #endif Rand_log_event::Rand_log_event(const char* buf, const Format_description_event* description_event) : binary_log::Rand_event(buf, description_event), Log_event(header(), footer()) { is_valid_param= true; } #ifndef MYSQL_CLIENT bool Rand_log_event::write(IO_CACHE* file) { uchar buf[16]; int8store(buf + RAND_SEED1_OFFSET, seed1); int8store(buf + RAND_SEED2_OFFSET, seed2); return (write_header(file, sizeof(buf)) || wrapper_my_b_safe_write(file, buf, sizeof(buf)) || write_footer(file)); } #endif #ifdef MYSQL_CLIENT void Rand_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { IO_CACHE *const head= &print_event_info->head_cache; char llbuff[22],llbuff2[22]; if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\tRand\n"); } my_b_printf(head, "SET @@RAND_SEED1=%s, @@RAND_SEED2=%s%s\n", llstr(seed1, llbuff),llstr(seed2, llbuff2), print_event_info->delimiter); } #endif /* MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Rand_log_event::do_apply_event(Relay_log_info const *rli) { /* We are now in a statement until the associated query log event has been processed. */ const_cast<Relay_log_info*>(rli)->set_flag(Relay_log_info::IN_STMT); if (rli->deferred_events_collecting) return rli->deferred_events->add(this); thd->rand.seed1= (ulong) seed1; thd->rand.seed2= (ulong) seed2; return 0; } int Rand_log_event::do_update_pos(Relay_log_info *rli) { rli->inc_event_relay_log_pos(); return 0; } Log_event::enum_skip_reason Rand_log_event::do_shall_skip(Relay_log_info *rli) { /* It is a common error to set the slave skip counter to 1 instead of 2 when recovering from an insert which used a auto increment, rand, or user var. Therefore, if the slave skip counter is 1, we just say that this event should be skipped by ignoring it, meaning that we do not change the value of the slave skip counter since it will be decreased by the following insert event. */ return continue_group(rli); } /** Exec deferred Int-, Rand- and User- var events prefixing a Query-log-event event. @param thd THD handle @return false on success, true if a failure in an event applying occurred. */ bool slave_execute_deferred_events(THD *thd) { bool res= false; Relay_log_info *rli= thd->rli_slave; assert(rli && (!rli->deferred_events_collecting || rli->deferred_events)); if (!rli->deferred_events_collecting || rli->deferred_events->is_empty()) return res; res= rli->deferred_events->execute(rli); rli->deferred_events->rewind(); return res; } #endif /* !MYSQL_CLIENT */ /************************************************************************** Xid_log_event methods **************************************************************************/ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Xid_log_event::pack_info(Protocol *protocol) { char buf[128], *pos; pos= my_stpcpy(buf, "COMMIT /* xid="); pos= longlong10_to_str(xid, pos, 10); pos= my_stpcpy(pos, " */"); protocol->store(buf, (uint) (pos-buf), &my_charset_bin); return 0; } #endif Xid_log_event:: Xid_log_event(const char* buf, const Format_description_event *description_event) : binary_log::Xid_event(buf, description_event), Xid_apply_log_event(buf, description_event, header(), footer()) { is_valid_param= true; } #ifndef MYSQL_CLIENT bool Xid_log_event::write(IO_CACHE* file) { DBUG_EXECUTE_IF("do_not_write_xid", return 0;); return (write_header(file, sizeof(xid)) || wrapper_my_b_safe_write(file, (uchar*) &xid, sizeof(xid)) || write_footer(file)); } #endif #ifdef MYSQL_CLIENT void Xid_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { IO_CACHE *const head= &print_event_info->head_cache; if (!print_event_info->short_form) { char buf[64]; longlong10_to_str(xid, buf, 10); print_header(head, print_event_info, FALSE); my_b_printf(head, "\tXid = %s\n", buf); } my_b_printf(head, "COMMIT%s\n", print_event_info->delimiter); } #endif /* MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** The methods combines few commit actions to make it useable as in the single- so multi- threaded case. @param thd_arg a pointer to THD handle @return false as success and true as an error */ bool Xid_log_event::do_commit(THD *thd_arg) { DBUG_EXECUTE_IF("dbug.reached_commit", {DBUG_SET("+d,dbug.enabled_commit");}); bool error= trans_commit(thd_arg); /* Automatically rolls back on error. */ DBUG_EXECUTE_IF("crash_after_apply", sql_print_information("Crashing crash_after_apply."); DBUG_SUICIDE();); thd_arg->mdl_context.release_transactional_locks(); error |= mysql_bin_log.gtid_end_transaction(thd_arg); /* The parser executing a SQLCOM_COMMIT or SQLCOM_ROLLBACK will reset the tx isolation level and access mode when the statement is finishing a transaction. For replicated workload, when dealing with pure transactional workloads, there will be no QUERY(COMMIT) finishing a transaction, but a Xid_log_event instead. So, if the slave applier changed the current transaction isolation level, it needs to be restored to the session default value once the current transaction has been committed. */ trans_reset_one_shot_chistics(thd); /* Increment the global status commit count variable */ if (!error) thd_arg->status_var.com_stat[SQLCOM_COMMIT]++; return error; } /** Worker commits Xid transaction and in case of its transactional info table marks the current group as done in the Coordnator's Group Assigned Queue. @return zero as success or non-zero as an error */ int Xid_apply_log_event::do_apply_event_worker(Slave_worker *w) { int error= 0; bool skipped_commit_pos= true; lex_start(thd); mysql_reset_thd_for_next_command(thd); Slave_committed_queue *coordinator_gaq= w->c_rli->gaq; /* For a slave Xid_log_event is COMMIT */ query_logger.general_log_print(thd, COM_QUERY, "COMMIT /* implicit, from Xid_log_event */"); DBUG_PRINT("mts", ("do_apply group master %s %llu group relay %s %llu event %s %llu.", w->get_group_master_log_name(), w->get_group_master_log_pos(), w->get_group_relay_log_name(), w->get_group_relay_log_pos(), w->get_event_relay_log_name(), w->get_event_relay_log_pos())); DBUG_EXECUTE_IF("crash_before_update_pos", sql_print_information("Crashing crash_before_update_pos."); DBUG_SUICIDE();); ulong gaq_idx= mts_group_idx; Slave_job_group *ptr_group= coordinator_gaq->get_job_group(gaq_idx); if (!thd->get_transaction()->xid_state()->check_in_xa(false) && w->is_transactional()) { /* Regular (not XA) transaction updates the transactional info table along with the main transaction. Otherwise, the local flag turned and given its value the info table is updated after do_commit. todo: the flag won't be need upon the full xa crash-safety bug76233 gets fixed. */ skipped_commit_pos= false; if ((error= w->commit_positions(this, ptr_group, w->is_transactional()))) goto err; } DBUG_PRINT("mts", ("do_apply group master %s %llu group relay %s %llu event %s %llu.", w->get_group_master_log_name(), w->get_group_master_log_pos(), w->get_group_relay_log_name(), w->get_group_relay_log_pos(), w->get_event_relay_log_name(), w->get_event_relay_log_pos())); DBUG_EXECUTE_IF("crash_after_update_pos_before_apply", sql_print_information("Crashing crash_after_update_pos_before_apply."); DBUG_SUICIDE();); error= do_commit(thd); if (error) { if (!skipped_commit_pos) w->rollback_positions(ptr_group); } else if (skipped_commit_pos) error= w->commit_positions(this, ptr_group, w->is_transactional()); err: return error; } int Xid_apply_log_event::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("Xid_log_event::do_apply_event"); int error= 0; char saved_group_master_log_name[FN_REFLEN]; char saved_group_relay_log_name[FN_REFLEN]; volatile my_off_t saved_group_master_log_pos; volatile my_off_t saved_group_relay_log_pos; char new_group_master_log_name[FN_REFLEN]; char new_group_relay_log_name[FN_REFLEN]; volatile my_off_t new_group_master_log_pos; volatile my_off_t new_group_relay_log_pos; lex_start(thd); mysql_reset_thd_for_next_command(thd); /* Anonymous GTID ownership may be released here if the last statement before XID updated a non-transactional table and was written to the binary log as a separate transaction (either because binlog_format=row or because binlog_direct_non_transactional_updates=1). So we need to re-acquire anonymous ownership. */ gtid_reacquire_ownership_if_anonymous(thd); Relay_log_info *rli_ptr= const_cast<Relay_log_info *>(rli); /* For a slave Xid_log_event is COMMIT */ query_logger.general_log_print(thd, COM_QUERY, "COMMIT /* implicit, from Xid_log_event */"); mysql_mutex_lock(&rli_ptr->data_lock); /* Save the rli positions. We need them to temporarily reset the positions just before the commit. */ strmake(saved_group_master_log_name, rli_ptr->get_group_master_log_name(), FN_REFLEN - 1); saved_group_master_log_pos= rli_ptr->get_group_master_log_pos(); strmake(saved_group_relay_log_name, rli_ptr->get_group_relay_log_name(), FN_REFLEN - 1); saved_group_relay_log_pos= rli_ptr->get_group_relay_log_pos(); DBUG_PRINT("info", ("do_apply group master %s %llu group relay %s %llu event %s %llu\n", rli_ptr->get_group_master_log_name(), rli_ptr->get_group_master_log_pos(), rli_ptr->get_group_relay_log_name(), rli_ptr->get_group_relay_log_pos(), rli_ptr->get_event_relay_log_name(), rli_ptr->get_event_relay_log_pos())); DBUG_EXECUTE_IF("crash_before_update_pos", sql_print_information("Crashing crash_before_update_pos."); DBUG_SUICIDE();); /* We need to update the positions in here to make it transactional. */ rli_ptr->inc_event_relay_log_pos(); rli_ptr->set_group_relay_log_pos(rli_ptr->get_event_relay_log_pos()); rli_ptr->set_group_relay_log_name(rli_ptr->get_event_relay_log_name()); rli_ptr->notify_group_relay_log_name_update(); if (common_header->log_pos) // 3.23 binlogs don't have log_posx rli_ptr->set_group_master_log_pos(common_header->log_pos); /* rli repository being transactional means replication is crash safe. Positions are written into transactional tables ahead of commit and the changes are made permanent during commit. XA transactional does not actually commit so has to defer its flush_info(). */ if (!thd->get_transaction()->xid_state()->check_in_xa(false) && rli_ptr->is_transactional()) { if ((error= rli_ptr->flush_info(true))) goto err; } DBUG_PRINT("info", ("do_apply group master %s %llu group relay %s %llu event %s %llu\n", rli_ptr->get_group_master_log_name(), rli_ptr->get_group_master_log_pos(), rli_ptr->get_group_relay_log_name(), rli_ptr->get_group_relay_log_pos(), rli_ptr->get_event_relay_log_name(), rli_ptr->get_event_relay_log_pos())); DBUG_EXECUTE_IF("crash_after_update_pos_before_apply", sql_print_information("Crashing crash_after_update_pos_before_apply."); DBUG_SUICIDE();); /** Commit operation expects the global transaction state variable 'xa_state'to be set to 'XA_NOTR'. In order to simulate commit failure we set the 'xa_state' to 'XA_IDLE' so that the commit reports 'ER_XAER_RMFAIL' error. */ DBUG_EXECUTE_IF("simulate_commit_failure", { thd->get_transaction()->xid_state()->set_state( XID_STATE::XA_IDLE); }); /* Save the new rli positions. These positions will be set back to group* positions on successful completion of the commit operation. */ strmake(new_group_master_log_name, rli_ptr->get_group_master_log_name(), FN_REFLEN - 1); new_group_master_log_pos= rli_ptr->get_group_master_log_pos(); strmake(new_group_relay_log_name, rli_ptr->get_group_relay_log_name(), FN_REFLEN - 1); new_group_relay_log_pos= rli_ptr->get_group_relay_log_pos(); /* Rollback positions in memory just before commit. Position values will be reset to their new values only on successful commit operation. */ rli_ptr->set_group_master_log_name(saved_group_master_log_name); rli_ptr->notify_group_master_log_name_update(); rli_ptr->set_group_master_log_pos(saved_group_master_log_pos); rli_ptr->set_group_relay_log_name(saved_group_relay_log_name); rli_ptr->notify_group_relay_log_name_update(); rli_ptr->set_group_relay_log_pos(saved_group_relay_log_pos); DBUG_PRINT("info", ("Rolling back to group master %s %llu group relay %s" " %llu\n", rli_ptr->get_group_master_log_name(), rli_ptr->get_group_master_log_pos(), rli_ptr->get_group_relay_log_name(), rli_ptr->get_group_relay_log_pos())); mysql_mutex_unlock(&rli_ptr->data_lock); error= do_commit(thd); mysql_mutex_lock(&rli_ptr->data_lock); if (error) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in Xid_log_event: Commit could not be completed, '%s'", thd->get_stmt_da()->message_text()); } else { DBUG_EXECUTE_IF("crash_after_commit_before_update_pos", sql_print_information("Crashing " "crash_after_commit_before_update_pos."); DBUG_SUICIDE();); /* Update positions on successful commit */ rli_ptr->set_group_master_log_name(new_group_master_log_name); rli_ptr->notify_group_master_log_name_update(); rli_ptr->set_group_master_log_pos(new_group_master_log_pos); rli_ptr->set_group_relay_log_name(new_group_relay_log_name); rli_ptr->notify_group_relay_log_name_update(); rli_ptr->set_group_relay_log_pos(new_group_relay_log_pos); DBUG_PRINT("info", ("Updating positions on succesful commit to group master" " %s %llu group relay %s %llu\n", rli_ptr->get_group_master_log_name(), rli_ptr->get_group_master_log_pos(), rli_ptr->get_group_relay_log_name(), rli_ptr->get_group_relay_log_pos())); /* For transactional repository the positions are flushed ahead of commit. Where as for non transactional rli repository the positions are flushed only on succesful commit. */ if (!rli_ptr->is_transactional()) rli_ptr->flush_info(false); } err: mysql_cond_broadcast(&rli_ptr->data_cond); mysql_mutex_unlock(&rli_ptr->data_lock); DBUG_RETURN(error); } Log_event::enum_skip_reason Xid_apply_log_event::do_shall_skip(Relay_log_info *rli) { DBUG_ENTER("Xid_log_event::do_shall_skip"); if (rli->slave_skip_counter > 0) { thd->variables.option_bits&= ~OPTION_BEGIN; DBUG_RETURN(Log_event::EVENT_SKIP_COUNT); } DBUG_RETURN(Log_event::do_shall_skip(rli)); } #endif /* !MYSQL_CLIENT */ /************************************************************************** XA_prepare_log_event methods **************************************************************************/ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int XA_prepare_log_event::pack_info(Protocol *protocol) { char buf[ser_buf_size]; char query[sizeof("XA COMMIT ONE PHASE") + 1 + sizeof(buf)]; /* RHS of the following assert is unknown to client sources */ compile_time_assert(ser_buf_size == XID::ser_buf_size); serialize_xid(buf, my_xid.formatID, my_xid.gtrid_length, my_xid.bqual_length, my_xid.data); sprintf(query, (one_phase ? "XA COMMIT %s ONE PHASE" : "XA PREPARE %s"), buf); protocol->store(query, strlen(query), &my_charset_bin); return 0; } #endif #ifndef MYSQL_CLIENT bool XA_prepare_log_event::write(IO_CACHE* file) { uint8 one_byte= one_phase; uchar buf_f[4]; uchar buf_g[4]; uchar buf_b[4]; int4store(buf_f, static_cast<XID*>(xid)->get_format_id()); int4store(buf_g, static_cast<XID*>(xid)->get_gtrid_length()); int4store(buf_b, static_cast<XID*>(xid)->get_bqual_length()); assert(xid_bufs_size == sizeof(buf_f) + sizeof(buf_g) + sizeof(buf_b)); return write_header(file, sizeof(one_byte) + xid_bufs_size + static_cast<XID*>(xid)->get_gtrid_length() + static_cast<XID*>(xid)->get_bqual_length()) || wrapper_my_b_safe_write(file, &one_byte, sizeof(one_byte)) || wrapper_my_b_safe_write(file, buf_f, sizeof(buf_f)) || wrapper_my_b_safe_write(file, buf_g, sizeof(buf_g)) || wrapper_my_b_safe_write(file, buf_b, sizeof(buf_b)) || wrapper_my_b_safe_write(file, (uchar*) static_cast<XID*>(xid)->get_data(), static_cast<XID*>(xid)->get_gtrid_length() + static_cast<XID*>(xid)->get_bqual_length()) || write_footer(file); } #endif #ifdef MYSQL_CLIENT void XA_prepare_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { IO_CACHE *const head= &print_event_info->head_cache; char buf[ser_buf_size]; print_header(head, print_event_info, FALSE); serialize_xid(buf, my_xid.formatID, my_xid.gtrid_length, my_xid.bqual_length, my_xid.data); my_b_printf(head, "\tXA PREPARE %s\n", buf); my_b_printf(head, one_phase ? "XA COMMIT %s ONE PHASE\n%s\n" : "XA PREPARE %s\n%s\n", buf, print_event_info->delimiter); } #endif /* MYSQL_CLIENT */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /** Differs from Xid_log_event::do_commit in that it carries out XA prepare (not the commit). It also can commit on one phase when the event's member @c one_phase set to true. @param thd a pointer to THD handle @return false as success and true as an error */ bool XA_prepare_log_event::do_commit(THD *thd) { bool error= false; xid_t xid; enum_gtid_statement_status state= gtid_pre_statement_checks(thd); if (state == GTID_STATEMENT_EXECUTE) { if (gtid_pre_statement_post_implicit_commit_checks(thd)) state= GTID_STATEMENT_CANCEL; } if (state == GTID_STATEMENT_CANCEL) { uint error= thd->get_stmt_da()->mysql_errno(); assert(error != 0); thd->rli_slave->report(ERROR_LEVEL, error, "Error executing XA PREPARE event: '%s'", thd->get_stmt_da()->message_text()); thd->is_slave_error= 1; return true; } else if (state == GTID_STATEMENT_SKIP) return false; xid.set(my_xid.formatID, my_xid.data, my_xid.gtrid_length, my_xid.data + my_xid.gtrid_length, my_xid.bqual_length); if (!one_phase) { /* This is XA-prepare branch. */ thd->lex->sql_command= SQLCOM_XA_PREPARE; thd->lex->m_sql_cmd= new Sql_cmd_xa_prepare(&xid); error= thd->lex->m_sql_cmd->execute(thd); } else { thd->lex->sql_command= SQLCOM_XA_COMMIT; thd->lex->m_sql_cmd= new Sql_cmd_xa_commit(&xid, XA_ONE_PHASE); error= thd->lex->m_sql_cmd->execute(thd); } if (!error) error = mysql_bin_log.gtid_end_transaction(thd); return error; } #endif /************************************************************************** User_var_log_event methods **************************************************************************/ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int User_var_log_event::pack_info(Protocol* protocol) { char *buf= 0; char quoted_id[1 + FN_REFLEN * 2 + 2];// quoted identifier size_t id_len= my_strmov_quoted_identifier(this->thd, quoted_id, name, name_len); quoted_id[id_len]= '\0'; size_t val_offset= 2 + id_len; size_t event_len= val_offset; if (is_null) { if (!(buf= (char*) my_malloc(key_memory_log_event, val_offset + 5, MYF(MY_WME)))) return 1; my_stpcpy(buf + val_offset, "NULL"); event_len= val_offset + 4; } else { switch (type) { case REAL_TYPE: double real_val; float8get(&real_val, val); if (!(buf= (char*) my_malloc(key_memory_log_event, val_offset + MY_GCVT_MAX_FIELD_WIDTH + 1, MYF(MY_WME)))) return 1; event_len+= my_gcvt(real_val, MY_GCVT_ARG_DOUBLE, MY_GCVT_MAX_FIELD_WIDTH, buf + val_offset, NULL); break; case INT_TYPE: if (!(buf= (char*) my_malloc(key_memory_log_event, val_offset + 22, MYF(MY_WME)))) return 1; event_len= longlong10_to_str(uint8korr(val), buf + val_offset, ((flags & User_var_log_event::UNSIGNED_F) ? 10 : -10))-buf; break; case DECIMAL_TYPE: { if (!(buf= (char*) my_malloc(key_memory_log_event, val_offset + DECIMAL_MAX_STR_LENGTH + 1, MYF(MY_WME)))) return 1; String str(buf+val_offset, DECIMAL_MAX_STR_LENGTH + 1, &my_charset_bin); my_decimal dec; binary2my_decimal(E_DEC_FATAL_ERROR, (uchar*) (val+2), &dec, val[0], val[1]); my_decimal2string(E_DEC_FATAL_ERROR, &dec, 0, 0, 0, &str); event_len= str.length() + val_offset; break; } case STRING_TYPE: /* 15 is for 'COLLATE' and other chars */ buf= (char*) my_malloc(key_memory_log_event, event_len+val_len*2+1+2*MY_CS_NAME_SIZE+15, MYF(MY_WME)); CHARSET_INFO *cs; if (!buf) return 1; if (!(cs= get_charset(charset_number, MYF(0)))) { my_stpcpy(buf+val_offset, "???"); event_len+= 3; } else { char *p= strxmov(buf + val_offset, "_", cs->csname, " ", NullS); p= str_to_hex(p, val, val_len); p= strxmov(p, " COLLATE ", cs->name, NullS); event_len= p-buf; } break; case ROW_TYPE: default: assert(1); return 1; } } buf[0]= '@'; memcpy(buf + 1, quoted_id, id_len); buf[1 + id_len]= '='; protocol->store(buf, event_len, &my_charset_bin); my_free(buf); return 0; } #endif /* !MYSQL_CLIENT */ User_var_log_event:: User_var_log_event(const char* buf, uint event_len, const Format_description_event* description_event) : binary_log::User_var_event(buf, event_len, description_event), Log_event(header(), footer()) #ifndef MYSQL_CLIENT ,deferred(false), query_id(0) #endif { if (name != 0) is_valid_param= true; } #ifndef MYSQL_CLIENT bool User_var_log_event::write(IO_CACHE* file) { char buf[UV_NAME_LEN_SIZE]; char buf1[UV_VAL_IS_NULL + UV_VAL_TYPE_SIZE + UV_CHARSET_NUMBER_SIZE + UV_VAL_LEN_SIZE]; uchar buf2[MY_MAX(8, DECIMAL_MAX_FIELD_SIZE + 2)], *pos= buf2; uint unsigned_len= 0; uint buf1_length; ulong event_length; int4store(buf, name_len); if ((buf1[0]= is_null)) { buf1_length= 1; val_len= 0; // Length of 'pos' } else { buf1[1]= type; int4store(buf1 + 2, charset_number); switch (type) { case REAL_TYPE: float8store(buf2, *(double*) val); break; case INT_TYPE: int8store(buf2, *(longlong*) val); unsigned_len= 1; break; case DECIMAL_TYPE: { my_decimal *dec= (my_decimal *)val; dec->sanity_check(); buf2[0]= (char)(dec->intg + dec->frac); buf2[1]= (char)dec->frac; decimal2bin(dec, buf2+2, buf2[0], buf2[1]); val_len= decimal_bin_size(buf2[0], buf2[1]) + 2; break; } case STRING_TYPE: pos= (uchar*) val; break; case ROW_TYPE: default: assert(1); return 0; } int4store(buf1 + 2 + UV_CHARSET_NUMBER_SIZE, val_len); buf1_length= 10; } /* Length of the whole event */ event_length= sizeof(buf)+ name_len + buf1_length + val_len + unsigned_len; return (write_header(file, event_length) || wrapper_my_b_safe_write(file, (uchar*) buf, sizeof(buf)) || wrapper_my_b_safe_write(file, (uchar*) name, name_len) || wrapper_my_b_safe_write(file, (uchar*) buf1, buf1_length) || wrapper_my_b_safe_write(file, pos, val_len) || wrapper_my_b_safe_write(file, &flags, unsigned_len) || write_footer(file)); } #endif /* User_var_log_event::print() */ #ifdef MYSQL_CLIENT void User_var_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { IO_CACHE *const head= &print_event_info->head_cache; char quoted_id[1 + NAME_LEN * 2 + 2];// quoted length of the identifier char name_id[NAME_LEN]; size_t quoted_len= 0; if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\tUser_var\n"); } my_stpcpy(name_id, name); name_id[name_len]= '\0'; my_b_printf(head, "SET @"); quoted_len= my_strmov_quoted_identifier((char *) quoted_id, (const char *) name_id); quoted_id[quoted_len]= '\0'; my_b_write(head, (uchar*) quoted_id, quoted_len); if (is_null) { my_b_printf(head, ":=NULL%s\n", print_event_info->delimiter); } else { switch (type) { case REAL_TYPE: double real_val; char real_buf[FMT_G_BUFSIZE(14)]; float8get(&real_val, val); sprintf(real_buf, "%.14g", real_val); my_b_printf(head, ":=%s%s\n", real_buf, print_event_info->delimiter); break; case INT_TYPE: char int_buf[22]; longlong10_to_str(uint8korr(val), int_buf, ((flags & User_var_log_event::UNSIGNED_F) ? 10 : -10)); my_b_printf(head, ":=%s%s\n", int_buf, print_event_info->delimiter); break; case DECIMAL_TYPE: { char str_buf[200]; int str_len= sizeof(str_buf) - 1; int precision= (int)val[0]; int scale= (int)val[1]; decimal_digit_t dec_buf[10]; decimal_t dec; dec.len= 10; dec.buf= dec_buf; bin2decimal((uchar*) val+2, &dec, precision, scale); decimal2string(&dec, str_buf, &str_len, 0, 0, 0); str_buf[str_len]= 0; my_b_printf(head, ":=%s%s\n", str_buf, print_event_info->delimiter); break; } case STRING_TYPE: { /* Let's express the string in hex. That's the most robust way. If we print it in character form instead, we need to escape it with character_set_client which we don't know (we will know it in 5.0, but in 4.1 we don't know it easily when we are printing User_var_log_event). Explanation why we would need to bother with character_set_client (quoting Bar): > Note, the parser doesn't switch to another unescaping mode after > it has met a character set introducer. > For example, if an SJIS client says something like: > SET @a= _ucs2 \0a\0b' > the string constant is still unescaped according to SJIS, not > according to UCS2. */ char *hex_str; CHARSET_INFO *cs; hex_str= (char *)my_malloc(key_memory_log_event, 2*val_len+1+2,MYF(MY_WME)); // 2 hex digits / byte if (!hex_str) return; str_to_hex(hex_str, val, val_len); /* For proper behaviour when mysqlbinlog|mysql, we need to explicitely specify the variable's collation. It will however cause problems when people want to mysqlbinlog|mysql into another server not supporting the character set. But there's not much to do about this and it's unlikely. */ if (!(cs= get_charset(charset_number, MYF(0)))) /* Generate an unusable command (=> syntax error) is probably the best thing we can do here. */ my_b_printf(head, ":=???%s\n", print_event_info->delimiter); else my_b_printf(head, ":=_%s %s COLLATE `%s`%s\n", cs->csname, hex_str, cs->name, print_event_info->delimiter); my_free(hex_str); } break; case ROW_TYPE: default: assert(1); return; } } } #endif /* User_var_log_event::do_apply_event() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int User_var_log_event::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("User_var_log_event::do_apply_event"); Item *it= 0; CHARSET_INFO *charset; query_id_t sav_query_id= 0; /* memorize orig id when deferred applying */ if (rli->deferred_events_collecting) { set_deferred(current_thd->query_id); int ret= rli->deferred_events->add(this); DBUG_RETURN(ret); } else if (is_deferred()) { sav_query_id= current_thd->query_id; current_thd->query_id= query_id; /* recreating original time context */ } if (!(charset= get_charset(charset_number, MYF(MY_WME)))) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "Invalid character set for User var event"); DBUG_RETURN(1); } double real_val; longlong int_val; /* We are now in a statement until the associated query log event has been processed. */ const_cast<Relay_log_info*>(rli)->set_flag(Relay_log_info::IN_STMT); if (is_null) { it= new Item_null(); } else { switch (type) { case REAL_TYPE: if (val_len != 8) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "Invalid variable length at User var event"); DBUG_RETURN(1); } float8get(&real_val, val); it= new Item_float(real_val, 0); val= (char*) &real_val; // Pointer to value in native format val_len= 8; break; case INT_TYPE: if (val_len != 8) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "Invalid variable length at User var event"); DBUG_RETURN(1); } int_val= (longlong) uint8korr(val); it= new Item_int(int_val); val= (char*) &int_val; // Pointer to value in native format val_len= 8; break; case DECIMAL_TYPE: { if (val_len < 3) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER_THD(thd, ER_SLAVE_FATAL_ERROR), "Invalid variable length at User var event"); DBUG_RETURN(1); } Item_decimal *dec= new Item_decimal((uchar*) val+2, val[0], val[1]); it= dec; val= (char *)dec->val_decimal(NULL); val_len= sizeof(my_decimal); break; } case STRING_TYPE: it= new Item_string(val, val_len, charset); break; case ROW_TYPE: default: assert(1); DBUG_RETURN(0); } } Item_func_set_user_var *e= new Item_func_set_user_var(Name_string(name, name_len, false), it, false); /* Item_func_set_user_var can't substitute something else on its place => 0 can be passed as last argument (reference on item) Fix_fields() can fail, in which case a call of update_hash() might crash the server, so if fix fields fails, we just return with an error. */ if (e->fix_fields(thd, 0)) DBUG_RETURN(1); /* A variable can just be considered as a table with a single record and with a single column. Thus, like a column value, it could always have IMPLICIT derivation. */ e->update_hash(val, val_len, (Item_result)type, charset, DERIVATION_IMPLICIT, (flags & binary_log::User_var_event::UNSIGNED_F)); if (!is_deferred()) free_root(thd->mem_root, 0); else current_thd->query_id= sav_query_id; /* restore current query's context */ DBUG_RETURN(0); } int User_var_log_event::do_update_pos(Relay_log_info *rli) { rli->inc_event_relay_log_pos(); return 0; } Log_event::enum_skip_reason User_var_log_event::do_shall_skip(Relay_log_info *rli) { /* It is a common error to set the slave skip counter to 1 instead of 2 when recovering from an insert which used a auto increment, rand, or user var. Therefore, if the slave skip counter is 1, we just say that this event should be skipped by ignoring it, meaning that we do not change the value of the slave skip counter since it will be decreased by the following insert event. */ return continue_group(rli); } #endif /* !MYSQL_CLIENT */ /************************************************************************** Unknown_log_event methods **************************************************************************/ #ifdef HAVE_REPLICATION #ifdef MYSQL_CLIENT void Unknown_log_event::print(FILE* file_arg, PRINT_EVENT_INFO* print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\n# %s", "Unknown event\n"); } #endif /************************************************************************** Stop_log_event methods **************************************************************************/ /* Stop_log_event::print() */ #ifdef MYSQL_CLIENT void Stop_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\tStop\n"); } #endif /* MYSQL_CLIENT */ #ifndef MYSQL_CLIENT /* The master stopped. We used to clean up all temporary tables but this is useless as, as the master has shut down properly, it has written all DROP TEMPORARY TABLE (prepared statements' deletion is TODO only when we binlog prep stmts). We used to clean up slave_load_tmpdir, but this is useless as it has been cleared at the end of LOAD DATA INFILE. So we have nothing to do here. The place were we must do this cleaning is in Start_log_event_v3::do_apply_event(), not here. Because if we come here, the master was sane. This must only be called from the Slave SQL thread, since it calls flush_relay_log_info(). */ int Stop_log_event::do_update_pos(Relay_log_info *rli) { int error_inc= 0; int error_flush= 0; /* We do not want to update master_log pos because we get a rotate event before stop, so by now group_master_log_name is set to the next log. If we updated it, we will have incorrect master coordinates and this could give false triggers in MASTER_POS_WAIT() that we have reached the target position when in fact we have not. The group position is always unchanged in MTS mode because the event is never executed so can't be scheduled to a Worker. */ if ((thd->variables.option_bits & OPTION_BEGIN) || rli->is_parallel_exec()) rli->inc_event_relay_log_pos(); else { error_inc= rli->inc_group_relay_log_pos(0, true/*need_data_lock=true*/); error_flush= rli->flush_info(TRUE); } return (error_inc || error_flush); } #endif /* !MYSQL_CLIENT */ #endif /* HAVE_REPLICATION */ /************************************************************************** Create_file_log_event methods **************************************************************************/ #ifndef MYSQL_CLIENT /* Create_file_log_event::write_data_body() */ bool Create_file_log_event::write_data_body(IO_CACHE* file) { bool res; if ((res= Load_log_event::write_data_body(file)) || fake_base) return res; return (my_b_safe_write(file, (uchar*) "", 1) || my_b_safe_write(file, block, block_len)); } /* Create_file_log_event::write_data_header() */ bool Create_file_log_event::write_data_header(IO_CACHE* file) { bool res; uchar buf[Binary_log_event::CREATE_FILE_HEADER_LEN]; if ((res= Load_log_event::write_data_header(file)) || fake_base) return res; int4store(buf + CF_FILE_ID_OFFSET, file_id); return my_b_safe_write(file, buf, Binary_log_event::CREATE_FILE_HEADER_LEN) != 0; } /* Create_file_log_event::write_base() */ bool Create_file_log_event::write_base(IO_CACHE* file) { bool res; fake_base= 1; // pretend we are Load event common_header->type_code= Load_log_event::get_type_code(); DBUG_EXECUTE_IF("simulate_cache_write_failure", { res= TRUE; my_error(ER_UNKNOWN_ERROR, MYF(0)); return res; }); res= write(file); fake_base= 0; common_header->type_code= binary_log::CREATE_FILE_EVENT; return res; } #endif /* !MYSQL_CLIENT */ /* Create_file_log_event ctor */ Create_file_log_event:: Create_file_log_event(const char* buf, uint len, const Format_description_event* description_event) : binary_log::Load_event(buf, 0, description_event), Load_log_event(buf,0,description_event), binary_log::Create_file_event(buf, len, description_event) { DBUG_ENTER("Create_file_log_event::Create_file_log_event(char*,...)"); /** We need to set exec_time here, which is ued to calcutate seconds behind master on the slave. */ exec_time= load_exec_time; sql_ex.data_info= sql_ex_data; if (inited_from_old || block != 0) is_valid_param= true; if (fake_base) common_header->type_code= Load_log_event::get_type_code(); else common_header->type_code= binary_log::CREATE_FILE_EVENT; DBUG_VOID_RETURN; } /* Create_file_log_event::print() */ #ifdef MYSQL_CLIENT void Create_file_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info, bool enable_local) { if (print_event_info->short_form) { if (enable_local && check_fname_outside_temp_buf()) Load_log_event::print(file, print_event_info); return; } if (enable_local) { Load_log_event::print(file, print_event_info, !check_fname_outside_temp_buf()); /** reduce the size of io cache so that the write function is called for every call to my_b_printf(). */ DBUG_EXECUTE_IF ("simulate_create_event_write_error", {(&print_event_info->head_cache)->write_pos= (&print_event_info->head_cache)->write_end; DBUG_SET("+d,simulate_file_write_error");}); /* That one is for "file_id: etc" below: in mysqlbinlog we want the #, in SHOW BINLOG EVENTS we don't. */ my_b_printf(&print_event_info->head_cache, "#"); } my_b_printf(&print_event_info->head_cache, " file_id: %d block_len: %d\n", file_id, block_len); } void Create_file_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { print(file, print_event_info, 0); } #endif /* MYSQL_CLIENT */ /* Create_file_log_event::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Create_file_log_event::pack_info(Protocol *protocol) { char buf[NAME_LEN*2 + 30 + 21*2], *pos; pos= my_stpcpy(buf, "db="); memcpy(pos, db, db_len); pos= my_stpcpy(pos + db_len, ";table="); memcpy(pos, table_name, table_name_len); pos= my_stpcpy(pos + table_name_len, ";file_id="); pos= int10_to_str((long) file_id, pos, 10); pos= my_stpcpy(pos, ";block_len="); pos= int10_to_str((long) block_len, pos, 10); protocol->store(buf, (uint) (pos-buf), &my_charset_bin); return 0; } #endif /* defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ /** Create_file_log_event::do_apply_event() Constructor for Create_file_log_event to intantiate an event from the relay log on the slave. @retval 0 Success @retval 1 Failure */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Create_file_log_event::do_apply_event(Relay_log_info const *rli) { char fname_buf[FN_REFLEN+TEMP_FILE_MAX_LEN]; char *ext; int fd = -1; IO_CACHE file; int error = 1; lex_start(thd); mysql_reset_thd_for_next_command(thd); THD_STAGE_INFO(thd, stage_making_temp_file_create_before_load_data); memset(&file, 0, sizeof(file)); ext= slave_load_file_stem(fname_buf, file_id, server_id, ".info"); /* old copy may exist already */ mysql_file_delete(key_file_log_event_info, fname_buf, MYF(0)); /** To simulate file creation failure, convert the file name to a directory by appending a "/" to the file name. */ DBUG_EXECUTE_IF("simulate_file_create_error_create_log_event", { strcat(fname_buf,"/"); }); if ((fd= mysql_file_create(key_file_log_event_info, fname_buf, CREATE_MODE, O_WRONLY | O_BINARY | O_EXCL | O_NOFOLLOW, MYF(MY_WME))) < 0 || init_io_cache(&file, fd, IO_SIZE, WRITE_CACHE, (my_off_t)0, 0, MYF(MY_WME|MY_NABP))) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in Create_file event: could not open file '%s', '%s'", fname_buf, thd->get_stmt_da()->message_text()); goto err; } // a trick to avoid allocating another buffer fname= fname_buf; fname_len= (uint) (my_stpcpy(ext, ".data") - fname); if (write_base(&file)) { my_stpcpy(ext, ".info"); // to have it right in the error message rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in Create_file event: could not write to file '%s', '%s'", fname_buf, thd->get_stmt_da()->message_text()); goto err; } end_io_cache(&file); mysql_file_close(fd, MYF(0)); // fname_buf now already has .data, not .info, because we did our trick /* old copy may exist already */ mysql_file_delete(key_file_log_event_data, fname_buf, MYF(0)); DBUG_EXECUTE_IF("simulate_file_create_error_create_log_event_2", { strcat(fname_buf, "/"); }); if ((fd= mysql_file_create(key_file_log_event_data, fname_buf, CREATE_MODE, O_WRONLY | O_BINARY | O_EXCL | O_NOFOLLOW, MYF(MY_WME))) < 0) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in Create_file event: could not open file '%s', '%s'", fname_buf, thd->get_stmt_da()->message_text()); goto err; } /** To simulate file write failure,close the file before the write operation. Write will fail with an error reporting file is UNOPENED. */ DBUG_EXECUTE_IF("simulate_file_write_error_create_log_event", { mysql_file_close(fd, MYF(0)); }); if (mysql_file_write(fd, block, block_len, MYF(MY_WME+MY_NABP))) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in Create_file event: write to '%s' failed, '%s'", fname_buf, thd->get_stmt_da()->message_text()); goto err; } error=0; // Everything is ok err: if (error) { end_io_cache(&file); /* Error occured. Delete .info and .data files if they are created. */ my_stpcpy(ext,".info"); mysql_file_delete(key_file_log_event_info, fname_buf, MYF(0)); my_stpcpy(ext,".data"); mysql_file_delete(key_file_log_event_data, fname_buf, MYF(0)); } if (fd >= 0) mysql_file_close(fd, MYF(0)); return error != 0; } #endif /* defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ /************************************************************************** Append_block_log_event methods **************************************************************************/ /* Append_block_log_event ctor */ #ifndef MYSQL_CLIENT Append_block_log_event::Append_block_log_event(THD *thd_arg, const char *db_arg, uchar *block_arg, uint block_len_arg, bool using_trans) : binary_log::Append_block_event(db_arg, block_arg, block_len_arg, thd_arg->file_id), Log_event(thd_arg, 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) { if (block != 0) is_valid_param= true; } #endif /* Append_block_log_event ctor */ Append_block_log_event::Append_block_log_event(const char* buf, uint len, const Format_description_event* description_event) : binary_log::Append_block_event(buf, len, description_event), Log_event(header(), footer()) { DBUG_ENTER("Append_block_log_event::Append_block_log_event(char*,...)"); if (block != 0) is_valid_param= true; DBUG_VOID_RETURN; } /* Append_block_log_event::write() */ #ifndef MYSQL_CLIENT bool Append_block_log_event::write(IO_CACHE* file) { uchar buf[Binary_log_event::APPEND_BLOCK_HEADER_LEN]; int4store(buf + AB_FILE_ID_OFFSET, file_id); return (write_header(file, Binary_log_event::APPEND_BLOCK_HEADER_LEN + block_len) || wrapper_my_b_safe_write(file, buf, Binary_log_event::APPEND_BLOCK_HEADER_LEN) || wrapper_my_b_safe_write(file, block, block_len) || write_footer(file)); } #endif /* Append_block_log_event::print() */ #ifdef MYSQL_CLIENT void Append_block_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\n#%s: file_id: %d block_len: %d\n", get_type_str(), file_id, block_len); } #endif /* MYSQL_CLIENT */ /* Append_block_log_event::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Append_block_log_event::pack_info(Protocol *protocol) { char buf[256]; size_t length; length= my_snprintf(buf, sizeof(buf), ";file_id=%u;block_len=%u", file_id, block_len); protocol->store(buf, length, &my_charset_bin); return 0; } /* Append_block_log_event::get_create_or_append() */ int Append_block_log_event::get_create_or_append() const { return 0; /* append to the file, fail if not exists */ } /* Append_block_log_event::do_apply_event() */ int Append_block_log_event::do_apply_event(Relay_log_info const *rli) { char fname[FN_REFLEN+TEMP_FILE_MAX_LEN]; int fd; int error = 1; DBUG_ENTER("Append_block_log_event::do_apply_event"); THD_STAGE_INFO(thd, stage_making_temp_file_append_before_load_data); slave_load_file_stem(fname, file_id, server_id, ".data"); if (get_create_or_append()) { /* Usually lex_start() is called by mysql_parse(), but we need it here as the present method does not call mysql_parse(). */ lex_start(thd); mysql_reset_thd_for_next_command(thd); /* old copy may exist already */ mysql_file_delete(key_file_log_event_data, fname, MYF(0)); DBUG_EXECUTE_IF("simulate_file_create_error_Append_block_event", { strcat(fname, "/"); }); if ((fd= mysql_file_create(key_file_log_event_data, fname, CREATE_MODE, O_WRONLY | O_BINARY | O_EXCL | O_NOFOLLOW, MYF(MY_WME))) < 0) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in %s event: could not create file '%s', '%s'", get_type_str(), fname, thd->get_stmt_da()->message_text()); goto err; } } else if ((fd= mysql_file_open(key_file_log_event_data, fname, O_WRONLY | O_APPEND | O_BINARY | O_NOFOLLOW, MYF(MY_WME))) < 0) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in %s event: could not open file '%s', '%s'", get_type_str(), fname, thd->get_stmt_da()->message_text()); goto err; } DBUG_EXECUTE_IF("remove_slave_load_file_before_write", { my_delete_allow_opened(fname, MYF(0)); }); DBUG_EXECUTE_IF("simulate_file_write_error_Append_block_event", { mysql_file_close(fd, MYF(0)); }); if (mysql_file_write(fd, block, block_len, MYF(MY_WME+MY_NABP))) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in %s event: write to '%s' failed, '%s'", get_type_str(), fname, thd->get_stmt_da()->message_text()); goto err; } error=0; err: if (fd >= 0) mysql_file_close(fd, MYF(0)); DBUG_RETURN(error); } #endif /************************************************************************** Delete_file_log_event methods **************************************************************************/ /* Delete_file_log_event ctor */ #ifndef MYSQL_CLIENT Delete_file_log_event::Delete_file_log_event(THD *thd_arg, const char* db_arg, bool using_trans) : binary_log::Delete_file_event(thd_arg->file_id, db_arg), Log_event(thd_arg, 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) { if (file_id != 0) is_valid_param= true; } #endif /* Delete_file_log_event ctor */ Delete_file_log_event::Delete_file_log_event(const char* buf, uint len, const Format_description_event* description_event) : binary_log::Delete_file_event(buf, len, description_event), Log_event(header(), footer()) { if (file_id != 0) is_valid_param= true; } /* Delete_file_log_event::write() */ #ifndef MYSQL_CLIENT bool Delete_file_log_event::write(IO_CACHE* file) { uchar buf[Binary_log_event::DELETE_FILE_HEADER_LEN]; int4store(buf + DF_FILE_ID_OFFSET, file_id); return (write_header(file, sizeof(buf)) || wrapper_my_b_safe_write(file, buf, sizeof(buf)) || write_footer(file)); } #endif /* Delete_file_log_event::print() */ #ifdef MYSQL_CLIENT void Delete_file_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\n#Delete_file: file_id=%u\n", file_id); } #endif /* MYSQL_CLIENT */ /* Delete_file_log_event::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Delete_file_log_event::pack_info(Protocol *protocol) { char buf[64]; size_t length; length= my_snprintf(buf, sizeof(buf), ";file_id=%u", (uint) file_id); protocol->store(buf, length, &my_charset_bin); return 0; } #endif /* Delete_file_log_event::do_apply_event() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Delete_file_log_event::do_apply_event(Relay_log_info const *rli) { char fname[FN_REFLEN+TEMP_FILE_MAX_LEN]; lex_start(thd); mysql_reset_thd_for_next_command(thd); char *ext= slave_load_file_stem(fname, file_id, server_id, ".data"); mysql_file_delete(key_file_log_event_data, fname, MYF(MY_WME)); my_stpcpy(ext, ".info"); mysql_file_delete(key_file_log_event_info, fname, MYF(MY_WME)); return 0; } #endif /* defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ /************************************************************************** Execute_load_log_event methods **************************************************************************/ /* Execute_load_log_event ctor */ #ifndef MYSQL_CLIENT Execute_load_log_event::Execute_load_log_event(THD *thd_arg, const char* db_arg, bool using_trans) : binary_log::Execute_load_event(thd_arg->file_id, db_arg), Log_event(thd_arg, 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) { if (file_id != 0) is_valid_param= true; } #endif /* Execute_load_log_event ctor */ Execute_load_log_event::Execute_load_log_event(const char* buf, uint len, const Format_description_event* description_event) : binary_log::Execute_load_event(buf, len, description_event), Log_event(header(), footer()) { if (file_id != 0) is_valid_param= true; } /* Execute_load_log_event::write() */ #ifndef MYSQL_CLIENT bool Execute_load_log_event::write(IO_CACHE* file) { uchar buf[Binary_log_event::EXEC_LOAD_HEADER_LEN]; int4store(buf + EL_FILE_ID_OFFSET, file_id); return (write_header(file, sizeof(buf)) || wrapper_my_b_safe_write(file, buf, sizeof(buf)) || write_footer(file)); } #endif /* Execute_load_log_event::print() */ #ifdef MYSQL_CLIENT void Execute_load_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\n#Exec_load: file_id=%d\n", file_id); } #endif /* Execute_load_log_event::pack_info() */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Execute_load_log_event::pack_info(Protocol *protocol) { char buf[64]; size_t length; length= my_snprintf(buf, sizeof(buf), ";file_id=%u", (uint) file_id); protocol->store(buf, length, &my_charset_bin); return 0; } /* Execute_load_log_event::do_apply_event() */ int Execute_load_log_event::do_apply_event(Relay_log_info const *rli) { char fname[FN_REFLEN+TEMP_FILE_MAX_LEN]; char *ext; int fd; int error= 1; IO_CACHE file; Load_log_event *lev= 0; lex_start(thd); mysql_reset_thd_for_next_command(thd); ext= slave_load_file_stem(fname, file_id, server_id, ".info"); /** To simulate file open failure, convert the file name to a directory by appending a "/" to the file name. File open will fail with an error reporting it is not a directory. */ DBUG_EXECUTE_IF("simulate_file_open_error_exec_event", { strcat(fname,"/"); }); if ((fd= mysql_file_open(key_file_log_event_info, fname, O_RDONLY | O_BINARY | O_NOFOLLOW, MYF(MY_WME))) < 0 || init_io_cache(&file, fd, IO_SIZE, READ_CACHE, (my_off_t)0, 0, MYF(MY_WME|MY_NABP))) { rli->report(ERROR_LEVEL, thd->get_stmt_da()->mysql_errno(), "Error in Exec_load event: could not open file, '%s'", thd->get_stmt_da()->message_text()); goto err; } if (!(lev= (Load_log_event*) Log_event::read_log_event(&file, (mysql_mutex_t*) 0, rli->get_rli_description_event(), opt_slave_sql_verify_checksum)) || lev->get_type_code() != binary_log::NEW_LOAD_EVENT) { rli->report(ERROR_LEVEL, ER_FILE_CORRUPT, ER(ER_FILE_CORRUPT), fname); goto err; } lev->thd = thd; /* lev->do_apply_event should use rli only for errors. lev->do_apply_event is the place where the table is loaded (it calls mysql_load()). */ if (lev->do_apply_event(0,rli,1)) { /* We want to indicate the name of the file that could not be loaded (SQL_LOADxxx). But as we are here we are sure the error is in rli->last_slave_error and rli->last_slave_errno (example of error: duplicate entry for key), so we don't want to overwrite it with the filename. What we want instead is add the filename to the current error message. */ char *tmp= my_strdup(key_memory_log_event, rli->last_error().message, MYF(MY_WME)); if (tmp) { rli->report(ERROR_LEVEL, rli->last_error().number, "%s. Failed executing load from '%s'", tmp, fname); my_free(tmp); } goto err; } /* We have an open file descriptor to the .info file; we need to close it or Windows will refuse to delete the file in mysql_file_delete(). */ if (fd >= 0) { mysql_file_close(fd, MYF(0)); end_io_cache(&file); fd= -1; } error = 0; err: DBUG_EXECUTE_IF("simulate_file_open_error_exec_event", { my_stpcpy(ext, ".info"); }); mysql_file_delete(key_file_log_event_info, fname, MYF(MY_WME)); my_stpcpy(ext, ".data"); mysql_file_delete(key_file_log_event_data, fname, MYF(MY_WME)); delete lev; if (fd >= 0) { mysql_file_close(fd, MYF(0)); end_io_cache(&file); } return error; } #endif /* defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ /************************************************************************** Begin_load_query_log_event methods **************************************************************************/ #ifndef MYSQL_CLIENT Begin_load_query_log_event:: Begin_load_query_log_event(THD* thd_arg, const char* db_arg, uchar* block_arg, uint block_len_arg, bool using_trans) : binary_log::Append_block_event(db_arg, block_arg, block_len_arg, thd_arg->file_id), Append_block_log_event(thd_arg, db_arg, block_arg, block_len_arg, using_trans), binary_log::Begin_load_query_event() { common_header->type_code= binary_log::BEGIN_LOAD_QUERY_EVENT; file_id= thd_arg->file_id= mysql_bin_log.next_file_id(); } #endif Begin_load_query_log_event:: Begin_load_query_log_event(const char* buf, uint len, const Format_description_event* desc_event) : binary_log::Append_block_event(buf, len, desc_event), Append_block_log_event(buf, len, desc_event), binary_log::Begin_load_query_event(buf, len, desc_event) { } #if defined( HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Begin_load_query_log_event::get_create_or_append() const { return 1; /* create the file */ } #endif /* defined( HAVE_REPLICATION) && !defined(MYSQL_CLIENT) */ #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) Log_event::enum_skip_reason Begin_load_query_log_event::do_shall_skip(Relay_log_info *rli) { /* If the slave skip counter is 1, then we should not start executing on the next event. */ return continue_group(rli); } #endif /************************************************************************** Execute_load_query_log_event methods **************************************************************************/ #ifndef MYSQL_CLIENT Execute_load_query_log_event:: Execute_load_query_log_event(THD *thd_arg, const char* query_arg, ulong query_length_arg, uint fn_pos_start_arg, uint fn_pos_end_arg, binary_log::enum_load_dup_handling dup_handling_arg, bool using_trans, bool immediate, bool suppress_use, int errcode) : binary_log::Query_event(query_arg, thd_arg->catalog().str, thd_arg->db().str, query_length_arg, thd_arg->thread_id(), thd_arg->variables.sql_mode, thd_arg->variables.auto_increment_increment, thd_arg->variables.auto_increment_offset, thd_arg->variables.lc_time_names->number, (ulonglong)thd_arg->table_map_for_update, errcode, thd_arg->db().str ? strlen(thd_arg->db().str) : 0, thd_arg->catalog().str ? strlen(thd_arg->catalog().str) : 0), Query_log_event(thd_arg, query_arg, query_length_arg, using_trans, immediate, suppress_use, errcode), binary_log::Execute_load_query_event(thd_arg->file_id, fn_pos_start_arg, fn_pos_end_arg, dup_handling_arg) { if (Query_log_event::is_valid() && file_id != 0) is_valid_param= true; common_header->type_code= binary_log::EXECUTE_LOAD_QUERY_EVENT; } #endif /* !MYSQL_CLIENT */ Execute_load_query_log_event:: Execute_load_query_log_event(const char* buf, uint event_len, const Format_description_event* desc_event) : binary_log::Query_event(buf, event_len, desc_event, binary_log::EXECUTE_LOAD_QUERY_EVENT), Query_log_event(buf, event_len, desc_event, binary_log::EXECUTE_LOAD_QUERY_EVENT), binary_log::Execute_load_query_event(buf, event_len, desc_event) { if (!Query_log_event::is_valid()) { //clear all the variables set in execute_load_query_event file_id= 0; fn_pos_start= 0; fn_pos_end= 0; dup_handling= binary_log::LOAD_DUP_ERROR; } if (Query_log_event::is_valid() && file_id != 0) is_valid_param= true; } ulong Execute_load_query_log_event::get_post_header_size_for_derived() { return Binary_log_event::EXECUTE_LOAD_QUERY_EXTRA_HEADER_LEN; } #ifndef MYSQL_CLIENT bool Execute_load_query_log_event::write_post_header_for_derived(IO_CACHE* file) { uchar buf[Binary_log_event::EXECUTE_LOAD_QUERY_EXTRA_HEADER_LEN]; int4store(buf, file_id); int4store(buf + 4, fn_pos_start); int4store(buf + 4 + 4, fn_pos_end); *(buf + 4 + 4 + 4)= (uchar) dup_handling; return wrapper_my_b_safe_write(file, buf, Binary_log_event::EXECUTE_LOAD_QUERY_EXTRA_HEADER_LEN); } #endif #ifdef MYSQL_CLIENT void Execute_load_query_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info) { print(file, print_event_info, 0); } /** Prints the query as LOAD DATA LOCAL and with rewritten filename. */ void Execute_load_query_log_event::print(FILE* file, PRINT_EVENT_INFO* print_event_info, const char *local_fname) { IO_CACHE *const head= &print_event_info->head_cache; print_query_header(head, print_event_info); /** reduce the size of io cache so that the write function is called for every call to my_b_printf(). */ DBUG_EXECUTE_IF ("simulate_execute_event_write_error", {head->write_pos= head->write_end; DBUG_SET("+d,simulate_file_write_error");}); if (local_fname) { my_b_write(head, (uchar*) query, fn_pos_start); my_b_printf(head, " LOCAL INFILE "); pretty_print_str(head, local_fname, strlen(local_fname)); if (dup_handling == binary_log::LOAD_DUP_REPLACE) my_b_printf(head, " REPLACE"); my_b_printf(head, " INTO"); my_b_write(head, (uchar*) query + fn_pos_end, q_len-fn_pos_end); my_b_printf(head, "\n%s\n", print_event_info->delimiter); } else { my_b_write(head, (uchar*) query, q_len); my_b_printf(head, "\n%s\n", print_event_info->delimiter); } if (!print_event_info->short_form) my_b_printf(head, "# file_id: %d \n", file_id); } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Execute_load_query_log_event::pack_info(Protocol *protocol) { char *buf, *pos; if (!(buf= (char*) my_malloc(key_memory_log_event, 9 + (db_len * 2) + 2 + q_len + 10 + 21, MYF(MY_WME)))) return 1; pos= buf; if (db && db_len) { /* Statically allocates room to store '\0' and an identifier that may have NAME_LEN * 2 due to quoting and there are two quoting characters that wrap them. */ char quoted_db[1 + NAME_LEN * 2 + 2];// quoted length of the identifier size_t size= 0; size= my_strmov_quoted_identifier(this->thd, quoted_db, db, 0); pos= my_stpcpy(buf, "use "); memcpy(pos, quoted_db, size); pos= my_stpcpy(pos + size, "; "); } if (query && q_len) { memcpy(pos, query, q_len); pos+= q_len; } pos= my_stpcpy(pos, " ;file_id="); pos= int10_to_str((long) file_id, pos, 10); protocol->store(buf, pos-buf, &my_charset_bin); my_free(buf); return 0; } int Execute_load_query_log_event::do_apply_event(Relay_log_info const *rli) { char *p; char *buf; char *fname; char *fname_end; int error; buf= (char*) my_malloc(key_memory_log_event, q_len + 1 - (fn_pos_end - fn_pos_start) + (FN_REFLEN + TEMP_FILE_MAX_LEN) + 10 + 8 + 5, MYF(MY_WME)); DBUG_EXECUTE_IF("LOAD_DATA_INFILE_has_fatal_error", my_free(buf); buf= NULL;); /* Replace filename and LOCAL keyword in query before executing it */ if (buf == NULL) { rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER(ER_SLAVE_FATAL_ERROR), "Not enough memory"); return 1; } p= buf; memcpy(p, query, fn_pos_start); p+= fn_pos_start; fname= (p= strmake(p, STRING_WITH_LEN(" INFILE \'"))); p= slave_load_file_stem(p, file_id, server_id, ".data"); fname_end= p= strend(p); // Safer than p=p+5 *(p++)='\''; switch (dup_handling) { case binary_log::LOAD_DUP_IGNORE: p= strmake(p, STRING_WITH_LEN(" IGNORE")); break; case binary_log::LOAD_DUP_REPLACE: p= strmake(p, STRING_WITH_LEN(" REPLACE")); break; default: /* Ordinary load data */ break; } p= strmake(p, STRING_WITH_LEN(" INTO ")); p= strmake(p, query+fn_pos_end, q_len-fn_pos_end); error= Query_log_event::do_apply_event(rli, buf, p-buf); /* Forging file name for deletion in same buffer */ *fname_end= 0; /* If there was an error the slave is going to stop, leave the file so that we can re-execute this event at START SLAVE. */ if (!error) mysql_file_delete(key_file_log_event_data, fname, MYF(MY_WME)); my_free(buf); return error; } #endif /************************************************************************** sql_ex_info methods **************************************************************************/ /* sql_ex_info::write_data() */ bool sql_ex_info::write_data(IO_CACHE* file) { if (data_info.new_format()) { return (write_str_at_most_255_bytes(file, data_info.field_term, (uint) data_info.field_term_len) || write_str_at_most_255_bytes(file, data_info.enclosed, (uint) data_info.enclosed_len) || write_str_at_most_255_bytes(file, data_info.line_term, (uint) data_info.line_term_len) || write_str_at_most_255_bytes(file, data_info.line_start, (uint) data_info.line_start_len) || write_str_at_most_255_bytes(file, data_info.escaped, (uint) data_info.escaped_len) || my_b_safe_write(file,(uchar*) &(data_info.opt_flags), 1)); } else { /** @todo This is sensitive to field padding. We should write a char[7], not an old_sql_ex. /sven */ binary_log::old_sql_ex old_ex; old_ex.field_term= *(data_info.field_term); old_ex.enclosed= *(data_info.enclosed); old_ex.line_term= *(data_info.line_term); old_ex.line_start= *(data_info.line_start); old_ex.escaped= *(data_info.escaped); old_ex.opt_flags= data_info.opt_flags; old_ex.empty_flags= data_info.empty_flags; return my_b_safe_write(file, (uchar*) &old_ex, sizeof(old_ex)) != 0; } } /** sql_ex_info::init() This method initializes the members of strcuture variable sql_ex_info, defined in a Load_log_event. The structure, initializes the sub struct data_info, with the subclause characters in a LOAD_DATA_INFILE query. */ const char *sql_ex_info::init(const char *buf, const char *buf_end, bool use_new_format) { return data_info.init(buf, buf_end, use_new_format); } #ifndef NDEBUG #ifndef MYSQL_CLIENT static uchar dbug_extra_row_data_val= 0; /** set_extra_data Called during self-test to generate various self-consistent binlog row event extra thread data structures which can be checked when reading the binlog. @param arr Buffer to use */ const uchar* set_extra_data(uchar* arr) { uchar val= (dbug_extra_row_data_val++) % (EXTRA_ROW_INFO_MAX_PAYLOAD + 1); /* 0 .. MAX_PAYLOAD + 1 */ arr[EXTRA_ROW_INFO_LEN_OFFSET]= val + EXTRA_ROW_INFO_HDR_BYTES; arr[EXTRA_ROW_INFO_FORMAT_OFFSET]= val; for (uchar i=0; i<val; i++) arr[EXTRA_ROW_INFO_HDR_BYTES+i]= val; return arr; } #endif // #ifndef MYSQL_CLIENT /** check_extra_data Called during self-test to check that binlog row event extra data is self- consistent as defined by the set_extra_data function above. Will assert(false) if not. @param extra_row_data */ void check_extra_data(uchar* extra_row_data) { assert(extra_row_data); uint16 len= extra_row_data[EXTRA_ROW_INFO_LEN_OFFSET]; uint8 val= len - EXTRA_ROW_INFO_HDR_BYTES; assert(extra_row_data[EXTRA_ROW_INFO_FORMAT_OFFSET] == val); for (uint16 i= 0; i < val; i++) { assert(extra_row_data[EXTRA_ROW_INFO_HDR_BYTES + i] == val); } } #endif // #ifndef NDEBUG /************************************************************************** Rows_log_event member functions **************************************************************************/ #ifndef MYSQL_CLIENT Rows_log_event::Rows_log_event(THD *thd_arg, TABLE *tbl_arg, const Table_id& tid, MY_BITMAP const *cols, bool using_trans, Log_event_type event_type, const uchar* extra_row_info) : binary_log::Rows_event(event_type), Log_event(thd_arg, 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) #ifdef HAVE_REPLICATION , m_curr_row(NULL), m_curr_row_end(NULL), m_key(NULL), m_key_info(NULL), m_distinct_keys(Key_compare(&m_key_info)), m_distinct_key_spare_buf(NULL) #endif { common_header->type_code= m_type; m_row_count= 0; m_table_id= tid; m_width= tbl_arg ? tbl_arg->s->fields : 1; m_rows_buf= 0; m_rows_cur= 0; m_rows_end= 0; m_flags= 0; m_type= event_type; m_extra_row_data=0; assert(tbl_arg && tbl_arg->s && tid.is_valid()); if (thd_arg->variables.option_bits & OPTION_NO_FOREIGN_KEY_CHECKS) set_flags(NO_FOREIGN_KEY_CHECKS_F); if (thd_arg->variables.option_bits & OPTION_RELAXED_UNIQUE_CHECKS) set_flags(RELAXED_UNIQUE_CHECKS_F); #ifndef NDEBUG uchar extra_data[255]; DBUG_EXECUTE_IF("extra_row_data_set", /* Set extra row data to a known value */ extra_row_info = set_extra_data(extra_data);); #endif if (extra_row_info) { /* Copy Extra data from thd into new event */ uint8 extra_data_len= extra_row_info[EXTRA_ROW_INFO_LEN_OFFSET]; assert(extra_data_len >= EXTRA_ROW_INFO_HDR_BYTES); m_extra_row_data= (uchar*) my_malloc(key_memory_log_event, extra_data_len, MYF(MY_WME)); if (likely(m_extra_row_data != NULL)) { memcpy(m_extra_row_data, extra_row_info, extra_data_len); } } /* if bitmap_init fails, caught in is_valid() */ if (likely(!bitmap_init(&m_cols, m_width <= sizeof(m_bitbuf)*8 ? m_bitbuf : NULL, m_width, false))) { /* Cols can be zero if this is a dummy binrows event */ if (likely(cols != NULL)) { memcpy(m_cols.bitmap, cols->bitmap, no_bytes_in_map(cols)); create_last_word_mask(&m_cols); } } else { // Needed because bitmap_init() does not set it to null on failure m_cols.bitmap= 0; } /* -Check that malloc() succeeded in allocating memory for the rows buffer and the COLS vector. -Checking that an Update_rows_log_event is valid is done while setting the Update_rows_log_event::is_valid */ if (m_rows_buf && m_cols.bitmap) is_valid_param= true; } #endif Rows_log_event::Rows_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Rows_event(buf, event_len, description_event), Log_event(header(), footer()), m_row_count(0), #ifndef MYSQL_CLIENT m_table(NULL), #endif m_rows_buf(0), m_rows_cur(0), m_rows_end(0) #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) , m_curr_row(NULL), m_curr_row_end(NULL), m_key(NULL), m_key_info(NULL), m_distinct_keys(Key_compare(&m_key_info)), m_distinct_key_spare_buf(NULL) #endif { DBUG_ENTER("Rows_log_event::Rows_log_event(const char*,...)"); assert(header()->type_code == m_type); if (m_extra_row_data) DBUG_EXECUTE_IF("extra_row_data_check", /* Check extra data has expected value */ check_extra_data(m_extra_row_data);); /* m_cols and m_cols_ai are of the type MY_BITMAP, which are members of class Rows_log_event, and are used while applying the row events on the slave. The bitmap integer is initialized by copying the contents of the vector column_before_image for m_cols.bitamp, and vector column_after_image for m_cols_ai.bitmap. m_cols_ai is only initialized for UPDATE_ROWS_EVENTS, else it is equal to the before image. */ memset(&m_cols, 0, sizeof(m_cols)); /* if bitmap_init fails, is_valid will be set to false */ if (likely(!bitmap_init(&m_cols, m_width <= sizeof(m_bitbuf) * 8 ? m_bitbuf : NULL, m_width, false))) { if (!columns_before_image.empty()) { memcpy(m_cols.bitmap, &columns_before_image[0], (m_width + 7) / 8); create_last_word_mask(&m_cols); DBUG_DUMP("m_cols", (uchar*) m_cols.bitmap, no_bytes_in_map(&m_cols)); } //end if columns_before_image.empty() else m_cols.bitmap= NULL; } else { // Needed because bitmap_init() does not set it to null on failure m_cols.bitmap= NULL; DBUG_VOID_RETURN; } m_cols_ai.bitmap= m_cols.bitmap; //See explanation below while setting is_valid. if ((m_type == binary_log::UPDATE_ROWS_EVENT) || (m_type == binary_log::UPDATE_ROWS_EVENT_V1)) { /* if bitmap_init fails, is_valid will be set to false*/ if (likely(!bitmap_init(&m_cols_ai, m_width <= sizeof(m_bitbuf_ai) * 8 ? m_bitbuf_ai : NULL, m_width, false))) { if (!columns_after_image.empty()) { memcpy(m_cols_ai.bitmap, &columns_after_image[0], (m_width + 7) / 8); create_last_word_mask(&m_cols_ai); DBUG_DUMP("m_cols_ai", (uchar*) m_cols_ai.bitmap, no_bytes_in_map(&m_cols_ai)); } else m_cols_ai.bitmap= NULL; } else { // Needed because bitmap_init() does not set it to null on failure m_cols_ai.bitmap= 0; DBUG_VOID_RETURN; } } /* m_rows_buf, m_cur_row and m_rows_end are pointers to the vector rows. m_rows_buf is the pointer to the first byte of first row in the event. m_curr_row points to current row being applied on the slave. Initially, this points to the same element as m_rows_buf in the vector. m_rows_end points to the last byte in the last row in the event. These pointers are used while applying the events on to the slave, and are not required for decoding. */ if (likely(!row.empty())) { m_rows_buf= &row[0]; #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) m_curr_row= m_rows_buf; #endif m_rows_end= m_rows_buf + row.size() - 1; m_rows_cur= m_rows_end; } /* -Check that malloc() succeeded in allocating memory for the row buffer and the COLS vector. -Checking that an Update_rows_log_event is valid is done while setting the Update_rows_log_event::is_valid */ if (m_rows_buf && m_cols.bitmap) is_valid_param= true; DBUG_VOID_RETURN; } Rows_log_event::~Rows_log_event() { if (m_cols.bitmap) { if (m_cols.bitmap == m_bitbuf) // no my_malloc happened m_cols.bitmap= 0; // so no my_free in bitmap_free bitmap_free(&m_cols); // To pair with bitmap_init(). } } size_t Rows_log_event::get_data_size() { int const general_type_code= get_general_type_code(); uchar buf[sizeof(m_width) + 1]; uchar *end= net_store_length(buf, m_width); DBUG_EXECUTE_IF("old_row_based_repl_4_byte_map_id_master", return 6 + no_bytes_in_map(&m_cols) + (end - buf) + (general_type_code == binary_log::UPDATE_ROWS_EVENT ? no_bytes_in_map(&m_cols_ai) : 0) + (m_rows_cur - m_rows_buf);); int data_size= 0; bool is_v2_event= common_header->type_code > binary_log::DELETE_ROWS_EVENT_V1; if (is_v2_event) { data_size= Binary_log_event::ROWS_HEADER_LEN_V2 + (m_extra_row_data ? ROWS_V_TAG_LEN + m_extra_row_data[EXTRA_ROW_INFO_LEN_OFFSET]: 0); } else { data_size= Binary_log_event::ROWS_HEADER_LEN_V1; } data_size+= no_bytes_in_map(&m_cols); data_size+= (uint) (end - buf); if (general_type_code == binary_log::UPDATE_ROWS_EVENT) data_size+= no_bytes_in_map(&m_cols_ai); data_size+= (uint) (m_rows_cur - m_rows_buf); return data_size; } #ifndef MYSQL_CLIENT int Rows_log_event::do_add_row_data(uchar *row_data, size_t length) { /* When the table has a primary key, we would probably want, by default, to log only the primary key value instead of the entire "before image". This would save binlog space. TODO */ DBUG_ENTER("Rows_log_event::do_add_row_data"); DBUG_PRINT("enter", ("row_data: 0x%lx length: %lu", (ulong) row_data, (ulong) length)); /* If length is zero, there is nothing to write, so we just return. Note that this is not an optimization, since calling realloc() with size 0 means free(). */ if (length == 0) { m_row_count++; DBUG_RETURN(0); } DBUG_DUMP("row_data", row_data, min<size_t>(length, 32)); assert(m_rows_buf <= m_rows_cur); assert(!m_rows_buf || (m_rows_end && m_rows_buf < m_rows_end)); assert(m_rows_cur <= m_rows_end); /* The cast will always work since m_rows_cur <= m_rows_end */ if (static_cast<size_t>(m_rows_end - m_rows_cur) <= length) { size_t const block_size= 1024; ulong cur_size= m_rows_cur - m_rows_buf; DBUG_EXECUTE_IF("simulate_too_big_row_case1", cur_size= UINT_MAX32 - (block_size * 10); length= UINT_MAX32 - (block_size * 10);); DBUG_EXECUTE_IF("simulate_too_big_row_case2", cur_size= UINT_MAX32 - (block_size * 10); length= block_size * 10;); DBUG_EXECUTE_IF("simulate_too_big_row_case3", cur_size= block_size * 10; length= UINT_MAX32 - (block_size * 10);); DBUG_EXECUTE_IF("simulate_too_big_row_case4", cur_size= UINT_MAX32 - (block_size * 10); length= (block_size * 10) - block_size + 1;); ulong remaining_space= UINT_MAX32 - cur_size; /* Check that the new data fits within remaining space and we can add block_size without wrapping. */ if (length > remaining_space || ((length + block_size) > remaining_space)) { sql_print_error("The row data is greater than 4GB, which is too big to " "write to the binary log."); DBUG_RETURN(ER_BINLOG_ROW_LOGGING_FAILED); } const size_t new_alloc= block_size * ((cur_size + length + block_size - 1) / block_size); if (new_alloc) row.resize(new_alloc); /* If the memory moved, we need to move the pointers */ if (new_alloc && &row[0] != m_rows_buf) { m_rows_buf= &row[0]; if (m_rows_buf && m_cols.bitmap) is_valid_param= true; m_rows_cur= m_rows_buf + cur_size; } /* The end pointer should always be changed to point to the end of the allocated memory. */ m_rows_end= m_rows_buf + new_alloc; } assert(m_rows_cur + length <= m_rows_end); memcpy(m_rows_cur, row_data, length); m_rows_cur+= length; m_row_count++; DBUG_RETURN(0); } #endif #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) /** Checks if any of the columns in the given table is signaled in the bitmap. For each column in the given table checks if it is signaled in the bitmap. This is most useful when deciding whether a before image (BI) can be used or not for searching a row. If no column is signaled, then the image cannot be used for searching a record (regardless of using position(), index scan or table scan). Here is an example: MASTER> SET @@binlog_row_image='MINIMAL'; MASTER> CREATE TABLE t1 (a int, b int, c int, primary key(c)); SLAVE> CREATE TABLE t1 (a int, b int); MASTER> INSERT INTO t1 VALUES (1,2,3); MASTER> UPDATE t1 SET a=2 WHERE b=2; For the update statement only the PK (column c) is logged in the before image (BI). As such, given that the slave has no column c, it will not be able to find the row, because BI has no values for the columns the slave knows about (column a and b). @param table the table reference on the slave. @param cols the bitmap signaling columns available in the BI. @return TRUE if BI contains usable colums for searching, FALSE otherwise. */ static my_bool is_any_column_signaled_for_table(TABLE *table, MY_BITMAP *cols) { DBUG_ENTER("is_any_column_signaled_for_table"); for (Field **ptr= table->field ; *ptr && ((*ptr)->field_index < cols->n_bits); ptr++) { if (bitmap_is_set(cols, (*ptr)->field_index)) DBUG_RETURN(TRUE); } DBUG_RETURN (FALSE); } /** Checks if the fields in the given key are signaled in the bitmap. Validates whether the before image is usable for the given key. It can be the case that the before image does not contain values for the key (eg, master was using 'minimal' option for image logging and slave has different index structure on the table). Here is an example: MASTER> SET @@binlog_row_image='MINIMAL'; MASTER> CREATE TABLE t1 (a int, b int, c int, primary key(c)); SLAVE> CREATE TABLE t1 (a int, b int, c int, key(a,c)); MASTER> INSERT INTO t1 VALUES (1,2,3); MASTER> UPDATE t1 SET a=2 WHERE b=2; When finding the row on the slave, one cannot use the index (a,c) to search for the row, because there is only data in the before image for column c. This function checks the fields needed for a given key and searches the bitmap to see if all the fields required are signaled. @param keyinfo reference to key. @param cols the bitmap signaling which columns have available data. @return TRUE if all fields are signaled in the bitmap for the given key, FALSE otherwise. */ static my_bool are_all_columns_signaled_for_key(KEY *keyinfo, MY_BITMAP *cols) { DBUG_ENTER("are_all_columns_signaled_for_key"); for (uint i=0 ; i < keyinfo->user_defined_key_parts ;i++) { uint fieldnr= keyinfo->key_part[i].fieldnr - 1; if (fieldnr >= cols->n_bits || !bitmap_is_set(cols, fieldnr)) DBUG_RETURN(FALSE); } DBUG_RETURN(TRUE); } /** Searches the table for a given key that can be used according to the existing values, ie, columns set in the bitmap. The caller can specify which type of key to find by setting the following flags in the key_type parameter: - PRI_KEY_FLAG Returns the primary key. - UNIQUE_KEY_FLAG Returns a unique key (flagged with HA_NOSAME) - MULTIPLE_KEY_FLAG Returns a key that is not unique (flagged with HA_NOSAME and without HA_NULL_PART_KEY) nor PK. The above flags can be used together, in which case, the search is conducted in the above listed order. Eg, the following flag: (PRI_KEY_FLAG | UNIQUE_KEY_FLAG | MULTIPLE_KEY_FLAG) means that a primary key is returned if it is suitable. If not then the unique keys are searched. If no unique key is suitable, then the keys are searched. Finally, if no key is suitable, MAX_KEY is returned. @param table reference to the table. @param bi_cols a bitmap that filters out columns that should not be considered while searching the key. Columns that should be considered are set. @param key_type the type of key to search for. @return MAX_KEY if no key, according to the key_type specified is suitable. Returns the key otherwise. */ static uint search_key_in_table(TABLE *table, MY_BITMAP *bi_cols, uint key_type) { DBUG_ENTER("search_key_in_table"); KEY *keyinfo; uint res= MAX_KEY; uint key; if (key_type & PRI_KEY_FLAG && (table->s->primary_key < MAX_KEY)) { DBUG_PRINT("debug", ("Searching for PK")); keyinfo= table->s->key_info + table->s->primary_key; if (are_all_columns_signaled_for_key(keyinfo, bi_cols)) DBUG_RETURN(table->s->primary_key); } if (key_type & UNIQUE_KEY_FLAG) { DBUG_PRINT("debug", ("Searching for UK")); for (key=0,keyinfo= table->key_info ; (key < table->s->keys) && (res == MAX_KEY); key++,keyinfo++) { /* - Unique keys cannot be disabled, thence we skip the check. - Skip unique keys with nullable parts - Skip primary keys */ if (!((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME) || (key == table->s->primary_key)) continue; res= are_all_columns_signaled_for_key(keyinfo, bi_cols) ? key : MAX_KEY; if (res < MAX_KEY) DBUG_RETURN(res); } DBUG_PRINT("debug", ("UK has NULLABLE parts or not all columns signaled.")); } if (key_type & MULTIPLE_KEY_FLAG && table->s->keys) { DBUG_PRINT("debug", ("Searching for K.")); for (key=0,keyinfo= table->key_info ; (key < table->s->keys) && (res == MAX_KEY); key++,keyinfo++) { /* - Skip innactive keys - Skip unique keys without nullable parts - Skip indices that do not support ha_index_next() e.g. full-text - Skip primary keys */ if (!(table->s->keys_in_use.is_set(key)) || ((keyinfo->flags & (HA_NOSAME | HA_NULL_PART_KEY)) == HA_NOSAME) || !(table->file->index_flags(key, 0, true) & HA_READ_NEXT) || (key == table->s->primary_key)) continue; res= are_all_columns_signaled_for_key(keyinfo, bi_cols) ? key : MAX_KEY; if (res < MAX_KEY) DBUG_RETURN(res); } DBUG_PRINT("debug", ("Not all columns signaled for K.")); } DBUG_RETURN(res); } void Rows_log_event::decide_row_lookup_algorithm_and_key() { DBUG_ENTER("decide_row_lookup_algorithm_and_key"); /* Decision table: - I --> Index scan / search - T --> Table scan - Hi --> Hash over index - Ht --> Hash over the entire table |--------------+-----------+------+------+------| | Index\Option | I , T , H | I, T | I, H | T, H | |--------------+-----------+------+------+------| | PK / UK | I | I | I | Hi | | K | Hi | I | Hi | Hi | | No Index | Ht | T | Ht | Ht | |--------------+-----------+------+------+------| */ TABLE *table= this->m_table; uint event_type= this->get_general_type_code(); MY_BITMAP *cols= &this->m_cols; this->m_rows_lookup_algorithm= ROW_LOOKUP_NOT_NEEDED; this->m_key_index= MAX_KEY; this->m_key_info= NULL; if (event_type == binary_log::WRITE_ROWS_EVENT) // row lookup not needed DBUG_VOID_RETURN; if (!(slave_rows_search_algorithms_options & SLAVE_ROWS_INDEX_SCAN)) goto TABLE_OR_INDEX_HASH_SCAN; /* PK or UK => use LOOKUP_INDEX_SCAN */ this->m_key_index= search_key_in_table(table, cols, (PRI_KEY_FLAG | UNIQUE_KEY_FLAG)); if (this->m_key_index != MAX_KEY) { DBUG_PRINT("info", ("decide_row_lookup_algorithm_and_key: decided - INDEX_SCAN")); this->m_rows_lookup_algorithm= ROW_LOOKUP_INDEX_SCAN; goto end; } TABLE_OR_INDEX_HASH_SCAN: /* NOTE: Engines like Blackhole cannot use HASH_SCAN, because they do not syncronize reads . */ if (!(slave_rows_search_algorithms_options & SLAVE_ROWS_HASH_SCAN) || (table->file->ha_table_flags() & HA_READ_OUT_OF_SYNC)) goto TABLE_OR_INDEX_FULL_SCAN; /* search for a key to see if we can narrow the lookup domain further. */ this->m_key_index= search_key_in_table(table, cols, (PRI_KEY_FLAG | UNIQUE_KEY_FLAG | MULTIPLE_KEY_FLAG)); this->m_rows_lookup_algorithm= ROW_LOOKUP_HASH_SCAN; if (m_key_index < MAX_KEY) m_distinct_key_spare_buf= (uchar*) thd->alloc(table->key_info[m_key_index].key_length); DBUG_PRINT("info", ("decide_row_lookup_algorithm_and_key: decided - HASH_SCAN")); goto end; TABLE_OR_INDEX_FULL_SCAN: this->m_key_index= MAX_KEY; /* If we can use an index, try to narrow the scan a bit further. */ if (slave_rows_search_algorithms_options & SLAVE_ROWS_INDEX_SCAN) this->m_key_index= search_key_in_table(table, cols, (PRI_KEY_FLAG | UNIQUE_KEY_FLAG | MULTIPLE_KEY_FLAG)); if (this->m_key_index != MAX_KEY) { DBUG_PRINT("info", ("decide_row_lookup_algorithm_and_key: decided - INDEX_SCAN")); this->m_rows_lookup_algorithm= ROW_LOOKUP_INDEX_SCAN; } else { DBUG_PRINT("info", ("decide_row_lookup_algorithm_and_key: decided - TABLE_SCAN")); this->m_rows_lookup_algorithm= ROW_LOOKUP_TABLE_SCAN; } end: /* m_key_index is ready, set m_key_info now. */ m_key_info= m_table->key_info + m_key_index; /* m_key_info will influence key comparison code in HASH_SCAN mode, so the m_distinct_keys set should still be empty. */ assert(m_distinct_keys.empty()); #ifndef NDEBUG const char* s= ((m_rows_lookup_algorithm == Rows_log_event::ROW_LOOKUP_TABLE_SCAN) ? "TABLE_SCAN" : ((m_rows_lookup_algorithm == Rows_log_event::ROW_LOOKUP_HASH_SCAN) ? "HASH_SCAN" : "INDEX_SCAN")); // only for testing purposes slave_rows_last_search_algorithm_used= m_rows_lookup_algorithm; DBUG_PRINT("debug", ("Row lookup method: %s", s)); #endif DBUG_VOID_RETURN; } /* Encapsulates the operations to be done before applying row events for update and delete. @ret value error code 0 success */ int Rows_log_event::row_operations_scan_and_key_setup() { int error= 0; DBUG_ENTER("Row_log_event::row_operations_scan_and_key_setup"); /* Prepare memory structures for search operations. If search is performed: 1. using hash search => initialize the hash 2. using key => decide on key to use and allocate mem structures 3. using table scan => do nothing */ decide_row_lookup_algorithm_and_key(); switch (m_rows_lookup_algorithm) { case ROW_LOOKUP_HASH_SCAN: { if (m_hash.init()) error= HA_ERR_OUT_OF_MEM; goto err; } case ROW_LOOKUP_INDEX_SCAN: { assert (m_key_index < MAX_KEY); // Allocate buffer for key searches m_key= (uchar*)my_malloc(key_memory_log_event, m_key_info->key_length, MYF(MY_WME)); if (!m_key) error= HA_ERR_OUT_OF_MEM; goto err; } case ROW_LOOKUP_TABLE_SCAN: default: break; } err: DBUG_RETURN(error); } /* Encapsulates the operations to be done after applying row events for update and delete. @ret value error code 0 success */ int Rows_log_event::row_operations_scan_and_key_teardown(int error) { DBUG_ENTER("Rows_log_event::row_operations_scan_and_key_teardown"); assert(!m_table->file->inited); switch (m_rows_lookup_algorithm) { case ROW_LOOKUP_HASH_SCAN: { m_hash.deinit(); // we don't need the hash anymore. goto err; } case ROW_LOOKUP_INDEX_SCAN: { if (m_table->s->keys > 0) { my_free(m_key); // Free for multi_malloc m_key= NULL; m_key_index= MAX_KEY; m_key_info= NULL; } goto err; } case ROW_LOOKUP_TABLE_SCAN: default: break; } err: m_rows_lookup_algorithm= ROW_LOOKUP_UNDEFINED; DBUG_RETURN(error); } /* Compares table->record[0] and table->record[1] Returns TRUE if different. */ static bool record_compare(TABLE *table, MY_BITMAP *cols) { DBUG_ENTER("record_compare"); /* Need to set the X bit and the filler bits in both records since there are engines that do not set it correctly. In addition, since MyISAM checks that one hasn't tampered with the record, it is necessary to restore the old bytes into the record after doing the comparison. TODO[record format ndb]: Remove it once NDB returns correct records. Check that the other engines also return correct records. */ DBUG_DUMP("record[0]", table->record[0], table->s->reclength); DBUG_DUMP("record[1]", table->record[1], table->s->reclength); bool result= false; uchar saved_x[2]= {0, 0}, saved_filler[2]= {0, 0}; if (table->s->null_bytes > 0) { for (int i = 0 ; i < 2 ; ++i) { /* If we have an X bit then we need to take care of it. */ if (!(table->s->db_options_in_use & HA_OPTION_PACK_RECORD)) { saved_x[i]= table->record[i][0]; table->record[i][0]|= 1U; } /* If (last_null_bit_pos == 0 && null_bytes > 1), then: X bit (if any) + N nullable fields + M Field_bit fields = 8 bits Ie, the entire byte is used. */ if (table->s->last_null_bit_pos > 0) { saved_filler[i]= table->record[i][table->s->null_bytes - 1]; table->record[i][table->s->null_bytes - 1]|= 256U - (1U << table->s->last_null_bit_pos); } } } /** Compare full record only if: - there are no blob fields (otherwise we would also need to compare blobs contents as well); - there are no varchar fields (otherwise we would also need to compare varchar contents as well); - there are no null fields, otherwise NULLed fields contents (i.e., the don't care bytes) may show arbitrary values, depending on how each engine handles internally. - if all the bitmap is set (both are full rows) */ if ((table->s->blob_fields + table->s->varchar_fields + table->s->null_fields) == 0 && bitmap_is_set_all(cols)) { result= cmp_record(table,record[1]); } /* Fallback to field-by-field comparison: 1. start by checking if the field is signaled: 2. if it is, first compare the null bit if the field is nullable 3. then compare the contents of the field, if it is not set to null */ else { for (Field **ptr=table->field ; *ptr && ((*ptr)->field_index < cols->n_bits) && !result; ptr++) { Field *field= *ptr; if (bitmap_is_set(cols, field->field_index) && !field->is_virtual_gcol()) { /* compare null bit */ if (field->is_null() != field->is_null_in_record(table->record[1])) result= true; /* compare content, only if fields are not set to NULL */ else if (!field->is_null()) result= field->cmp_binary_offset(table->s->rec_buff_length); } } } /* Restore the saved bytes. TODO[record format ndb]: Remove this code once NDB returns the correct record format. */ if (table->s->null_bytes > 0) { for (int i = 0 ; i < 2 ; ++i) { if (!(table->s->db_options_in_use & HA_OPTION_PACK_RECORD)) table->record[i][0]= saved_x[i]; if (table->s->last_null_bit_pos) table->record[i][table->s->null_bytes - 1]= saved_filler[i]; } } DBUG_RETURN(result); } void Rows_log_event::do_post_row_operations(Relay_log_info const *rli, int error) { /* If m_curr_row_end was not set during event execution (e.g., because of errors) we can't proceed to the next row. If the error is transient (i.e., error==0 at this point) we must call unpack_current_row() to set m_curr_row_end. */ DBUG_PRINT("info", ("curr_row: 0x%lu; curr_row_end: 0x%lu; rows_end: 0x%lu", (ulong) m_curr_row, (ulong) m_curr_row_end, (ulong) m_rows_end)); if (!m_curr_row_end && !error) { const uchar *previous_m_curr_row= m_curr_row; error= unpack_current_row(rli, &m_cols); if (!error && previous_m_curr_row == m_curr_row) { error= 1; } } // at this moment m_curr_row_end should be set assert(error || m_curr_row_end != NULL); assert(error || m_curr_row <= m_curr_row_end); assert(error || m_curr_row_end <= m_rows_end); m_curr_row= m_curr_row_end; if (error == 0 && !m_table->file->has_transactions()) { thd->get_transaction()->set_unsafe_rollback_flags(Transaction_ctx::SESSION, TRUE); thd->get_transaction()->set_unsafe_rollback_flags(Transaction_ctx::STMT, TRUE); } } int Rows_log_event::handle_idempotent_and_ignored_errors(Relay_log_info const *rli, int *err) { int error= *err; if (error) { int actual_error= convert_handler_error(error, thd, m_table); bool idempotent_error= (idempotent_error_code(error) && (rbr_exec_mode == RBR_EXEC_MODE_IDEMPOTENT)); bool ignored_error= (idempotent_error == 0 ? ignored_error_code(actual_error) : 0); if (idempotent_error || ignored_error) { loglevel ll; if (idempotent_error) ll= WARNING_LEVEL; else ll= INFORMATION_LEVEL; slave_rows_error_report(ll, error, rli, thd, m_table, get_type_str(), const_cast<Relay_log_info*>(rli)->get_rpl_log_name(), (ulong) common_header->log_pos); thd->get_stmt_da()->reset_condition_info(thd); clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); *err= 0; if (idempotent_error == 0) return ignored_error; } } return *err; } int Rows_log_event::do_apply_row(Relay_log_info const *rli) { DBUG_ENTER("Rows_log_event::do_apply_row"); int error= 0; /* in_use can have been set to NULL in close_tables_for_reopen */ THD* old_thd= m_table->in_use; if (!m_table->in_use) m_table->in_use= thd; error= do_exec_row(rli); if(error) { DBUG_PRINT("info", ("error: %s", HA_ERR(error))); assert(error != HA_ERR_RECORD_DELETED); } m_table->in_use = old_thd; DBUG_RETURN(error); } /** Does the cleanup - closes the index if opened by open_record_scan - closes the table if opened for scanning. */ int Rows_log_event::close_record_scan() { DBUG_ENTER("Rows_log_event::close_record_scan"); int error= 0; // if there is something to actually close if (m_key_index < MAX_KEY) { if (m_table->file->inited) error= m_table->file->ha_index_end(); } else if (m_table->file->inited) error= m_table->file->ha_rnd_end(); DBUG_RETURN(error); } /** Fetches next row. If it is a HASH_SCAN over an index, it populates table->record[0] with the next row corresponding to the index. If the indexes are in non-contigous ranges it fetches record corresponding to the key value in the next range. @parms: bool first_read : signifying if this is the first time we are reading a row over an index. @return_value: - error code when there are no more reeords to be fetched or some other error occured, - 0 otherwise. */ int Rows_log_event::next_record_scan(bool first_read) { DBUG_ENTER("Rows_log_event::next_record_scan"); assert(m_table->file->inited); TABLE *table= m_table; int error= 0; if (m_key_index >= MAX_KEY) error= table->file->ha_rnd_next(table->record[0]); else { /* We need to set the null bytes to ensure that the filler bit are all set when returning. There are storage engines that just set the necessary bits on the bytes and don't set the filler bits correctly. */ if (table->s->null_bytes > 0) table->record[0][table->s->null_bytes - 1]|= 256U - (1U << table->s->last_null_bit_pos); if (!first_read) { /* if we fail to fetch next record corresponding to a key value, we move to the next key value. If we are out of key values as well an error will be returned. */ error= table->file->ha_index_next_same(table->record[0], m_key, m_key_info->key_length); if(m_rows_lookup_algorithm == ROW_LOOKUP_HASH_SCAN) { /* if we are out of rows for this particular key value, we reposition the marker according to the next key value that we have in the list. */ if (error) { if (m_itr != m_distinct_keys.end()) { m_key= *m_itr; m_itr++; first_read= true; } else error= HA_ERR_KEY_NOT_FOUND; } } } if (first_read) if ((error= table->file->ha_index_read_map(table->record[0], m_key, HA_WHOLE_KEY, HA_READ_KEY_EXACT))) { DBUG_PRINT("info",("no record matching the key found in the table")); if (error == HA_ERR_RECORD_DELETED) error= HA_ERR_KEY_NOT_FOUND; } } DBUG_RETURN(error); } /** Initializes scanning of rows. Opens an index and initializes an iterator over a list of distinct keys (m_distinct_keys) if it is a HASH_SCAN over an index or the table if its a HASH_SCAN over the table. */ int Rows_log_event::open_record_scan() { int error= 0; TABLE *table= m_table; DBUG_ENTER("Rows_log_event::open_record_scan"); if (m_key_index < MAX_KEY ) { if(m_rows_lookup_algorithm == ROW_LOOKUP_HASH_SCAN) { /* initialize the iterator over the list of distinct keys that we have */ m_itr= m_distinct_keys.begin(); /* get the first element from the list of keys and increment the iterator */ m_key= *m_itr; m_itr++; } else { /* this is an INDEX_SCAN we need to store the key in m_key */ assert((m_rows_lookup_algorithm == ROW_LOOKUP_INDEX_SCAN) && m_key); key_copy(m_key, m_table->record[0], m_key_info, 0); } /* Save copy of the record in table->record[1]. It might be needed later if linear search is used to find exact match. */ store_record(table,record[1]); DBUG_PRINT("info",("locating record using a key (index_read)")); /* The m_key_index'th key is active and usable: search the table using the index */ if (!table->file->inited && (error= table->file->ha_index_init(m_key_index, FALSE))) { DBUG_PRINT("info",("ha_index_init returns error %d",error)); goto end; } DBUG_DUMP("key data", m_key, m_key_info->key_length); } else { if ((error= table->file->ha_rnd_init(1))) { DBUG_PRINT("info",("error initializing table scan" " (ha_rnd_init returns %d)",error)); table->file->print_error(error, MYF(0)); } } end: DBUG_RETURN(error); } /** Populates the m_distinct_keys with unique keys to be modified during HASH_SCAN over keys. @return_value -0 success -Err_code */ int Rows_log_event::add_key_to_distinct_keyset() { int error= 0; DBUG_ENTER("Rows_log_event::add_key_to_distinct_keyset"); assert(m_key_index < MAX_KEY); key_copy(m_distinct_key_spare_buf, m_table->record[0], m_key_info, 0); std::pair<std::set<uchar *, Key_compare>::iterator,bool> ret= m_distinct_keys.insert(m_distinct_key_spare_buf); if (ret.second) { /* Insert is successful, so allocate a new buffer for next key */ m_distinct_key_spare_buf= (uchar*) thd->alloc(m_key_info->key_length); if (!m_distinct_key_spare_buf) { error= HA_ERR_OUT_OF_MEM; goto err; } } err: DBUG_RETURN(error); } int Rows_log_event::do_index_scan_and_update(Relay_log_info const *rli) { DBUG_ENTER("Rows_log_event::do_index_scan_and_update"); assert(m_table && m_table->in_use != NULL); int error= 0; const uchar *saved_m_curr_row= m_curr_row; /* rpl_row_tabledefs.test specifies that if the extra field on the slave does not have a default value and this is okay with Delete or Update events. Todo: fix wl3228 hld that requires defaults for all types of events */ prepare_record(m_table, &m_cols, FALSE); if ((error= unpack_current_row(rli, &m_cols))) goto end; /* Trying to do an index scan without a usable key This is a valid state because we allow the user to set Slave_rows_search_algorithm= 'INDEX_SCAN'. Therefore on tables with no indexes we will end up here. */ if (m_key_index >= MAX_KEY) { error= HA_ERR_END_OF_FILE; goto end; } #ifndef NDEBUG DBUG_PRINT("info",("looking for the following record")); DBUG_DUMP("record[0]", m_table->record[0], m_table->s->reclength); #endif if (m_key_index != m_table->s->primary_key) /* we dont have a PK, or PK is not usable */ goto INDEX_SCAN; if ((m_table->file->ha_table_flags() & HA_READ_BEFORE_WRITE_REMOVAL)) { /* Read removal is possible since the engine supports write without previous read using full primary key */ DBUG_PRINT("info", ("using read before write removal")); assert(m_key_index == m_table->s->primary_key); /* Tell the handler to ignore if key exists or not, since it's not yet known if the key does exist(when using rbwr) */ m_table->file->extra(HA_EXTRA_IGNORE_NO_KEY); goto end; } if ((m_table->file->ha_table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_POSITION)) { /* Use a more efficient method to fetch the record given by table->record[0] if the engine allows it. We first compute a row reference using the position() member function (it will be stored in table->file->ref) and then use rnd_pos() to position the "cursor" (i.e., record[0] in this case) at the correct row. TODO: Check that the correct record has been fetched by comparing it with the original record. Take into account that the record on the master and slave can be of different length. Something along these lines should work: ADD>>> store_record(table,record[1]); int error= table->file->rnd_pos(table->record[0], table->file->ref); ADD>>> assert(memcmp(table->record[1], table->record[0], table->s->reclength) == 0); */ DBUG_PRINT("info",("locating record using primary key (position)")); if (m_table->file->inited && (error= m_table->file->ha_index_end())) goto end; error= m_table->file->rnd_pos_by_record(m_table->record[0]); if (error) { DBUG_PRINT("info",("rnd_pos returns error %d",error)); if (error == HA_ERR_RECORD_DELETED) error= HA_ERR_KEY_NOT_FOUND; } goto end; } // We can't use position() - try other methods. INDEX_SCAN: /* Use the m_key_index'th key */ if ((error= open_record_scan())) goto end; error= next_record_scan(true); if (error) { DBUG_PRINT("info",("no record matching the key found in the table")); if (error == HA_ERR_RECORD_DELETED) error= HA_ERR_KEY_NOT_FOUND; goto end; } DBUG_PRINT("info",("found first matching record")); DBUG_DUMP("record[0]", m_table->record[0], m_table->s->reclength); /* Below is a minor "optimization". If the key (i.e., key number 0) has the HA_NOSAME flag set, we know that we have found the correct record (since there can be no duplicates); otherwise, we have to compare the record with the one found to see if it is the correct one. CAVEAT! This behaviour is essential for the replication of, e.g., the mysql.proc table since the correct record *shall* be found using the primary key *only*. There shall be no comparison of non-PK columns to decide if the correct record is found. I can see no scenario where it would be incorrect to chose the row to change only using a PK or an UNNI. */ if (m_key_info->flags & HA_NOSAME || m_key_index == m_table->s->primary_key) { /* Unique does not have non nullable part */ if (!(m_key_info->flags & (HA_NULL_PART_KEY))) goto end; // record found else { /* Unique has nullable part. We need to check if there is any field in the BI image that is null and part of UNNI. */ bool null_found= FALSE; for (uint i=0; i < m_key_info->user_defined_key_parts && !null_found; i++) { uint fieldnr= m_key_info->key_part[i].fieldnr - 1; Field **f= m_table->field+fieldnr; null_found= (*f)->is_null(); } if (!null_found) goto end; // record found /* else fall through to index scan */ } } /* In case key is not unique, we still have to iterate over records found and find the one which is identical to the row given. A copy of the record we are looking for is stored in record[1]. */ DBUG_PRINT("info",("non-unique index, scanning it to find matching record")); while (record_compare(m_table, &m_cols)) { while((error= next_record_scan(false))) { /* We just skip records that has already been deleted */ if (error == HA_ERR_RECORD_DELETED) continue; DBUG_PRINT("info",("no record matching the given row found")); goto end; } } end: assert(error != HA_ERR_RECORD_DELETED); if (error && error != HA_ERR_RECORD_DELETED) m_table->file->print_error(error, MYF(0)); else error= do_apply_row(rli); if (!error) error= close_record_scan(); else /* we are already with errors. Keep the error code and try to close the scan anyway. */ (void) close_record_scan(); int unpack_error = skip_after_image_for_update_event(rli, saved_m_curr_row); if (!error) error = unpack_error; m_table->default_column_bitmaps(); DBUG_RETURN(error); } int Update_rows_log_event::skip_after_image_for_update_event( const Relay_log_info *rli, const uchar *curr_bi_start) { if (m_curr_row == curr_bi_start && m_curr_row_end != NULL) { /* This handles the case that the BI was read successfully, but an error happened while looking up the row. In this case, the AI has not been read, so the read position is between the two images. In case the error is idempotent, we need to move the position to the end of the row, and therefore we skip past the AI. The normal behavior is: When unpack_row reads a row image, and there is no error, unpack_row sets m_curr_row_end to point to the end of the image, and leaves m_curr_row to point at the beginning. The AI is read from Update_rows_log_event::do_exec_row. Before calling unpack_row, do_exec_row sets m_curr_row=m_curr_row_end, so that it actually reads the AI. And again, if there is no error, unpack_row sets m_curr_row_end to point to the end of the AI. Thus, the positions are moved as follows: +--------------+--------------+ | BI | AI | NULL +--------------+--------------+ 0. Initial values ^m_curr_row ^m_curr_row_end 1. Read BI, no error ^m_curr_row ^m_curr_row_end 2. Lookup BI 3. Set m_curr_row ^m_curr_row ^m_curr_row_end 4. Read AI, no error ^m_curr_row ^m_curr_row_end If an error happened while reading the BI (e.g. corruption), then we should not try to read the AI here. Therefore we do not read the AI if m_curr_row_end==NULL. If an error happened while looking up BI, then we should try to read AI here. Then we know m_curr_row_end points to beginning of AI, so we come here, set m_curr_row=m_curr_row_end, and read the AI. If an error happened while reading the AI, then we should not try to read the AI again. Therefore we do not read the AI if m_curr_row==curr_bi_start. */ m_curr_row = m_curr_row_end; return unpack_current_row(rli, &m_cols_ai); } return 0; } int Rows_log_event::do_hash_row(Relay_log_info const *rli) { DBUG_ENTER("Rows_log_event::do_hash_row"); assert(m_table && m_table->in_use != NULL); int error= 0; /* create an empty entry to add to the hash table */ HASH_ROW_ENTRY* entry= m_hash.make_entry(); if (entry == NULL) { error= 1; goto end; } /* Prepare the record, unpack and save positions. */ entry->positions->bi_start= m_curr_row; // save the bi start pos prepare_record(m_table, &m_cols, false); if ((error= unpack_current_row(rli, &m_cols))) goto end; entry->positions->bi_ends= m_curr_row_end; // save the bi end pos /* Now that m_table->record[0] is filled in, we can add the entry to the hash table. Note that the put operation calculates the key based on record[0] contents (including BLOB fields). */ m_hash.put(m_table, &m_cols, entry); if (m_key_index < MAX_KEY) add_key_to_distinct_keyset(); /* We need to unpack the AI to advance the positions, so we know when we have reached m_rows_end and that we do not unpack the AI in the next iteration as if it was a BI. */ if (get_general_type_code() == binary_log::UPDATE_ROWS_EVENT) { /* Save a copy of the BI. */ store_record(m_table, record[1]); /* This is the situation after hashing the BI: ===|=== before image ====|=== after image ===|=== ^ ^ m_curr_row m_curr_row_end */ /* Set the position to the start of the record to be unpacked. */ m_curr_row= m_curr_row_end; /* We shouldn't need this, but lets not leave loose ends */ prepare_record(m_table, &m_cols, false); error= unpack_current_row(rli, &m_cols_ai); /* This is the situation after unpacking the AI: ===|=== before image ====|=== after image ===|=== ^ ^ m_curr_row m_curr_row_end */ /* Restore back the copy of the BI. */ restore_record(m_table, record[1]); } end: DBUG_RETURN(error); } int Rows_log_event::do_scan_and_update(Relay_log_info const *rli) { DBUG_ENTER("Rows_log_event::do_scan_and_update"); assert(m_table && m_table->in_use != NULL); assert(m_hash.is_empty() == false); TABLE *table= m_table; int error= 0; const uchar *saved_last_m_curr_row= NULL; const uchar *saved_last_m_curr_row_end= NULL; /* create an empty entry to add to the hash table */ HASH_ROW_ENTRY* entry= NULL; int idempotent_errors= 0; int i= 0; saved_last_m_curr_row=m_curr_row; saved_last_m_curr_row_end=m_curr_row_end; DBUG_PRINT("info",("Hash was populated with %d records!", m_hash.size())); /* open table or index depending on whether we have set m_key_index or not. */ if ((error= open_record_scan())) goto err; /* Scan the table only once and compare against entries in hash. When a match is found, apply the changes. */ do { /* get the next record from the table */ error= next_record_scan(i == 0); i++; if(error) DBUG_PRINT("info", ("error: %s", HA_ERR(error))); switch (error) { case 0: { entry= m_hash.get(table, &m_cols); store_record(table, record[1]); /** If there are collisions we need to be sure that this is indeed the record we want. Loop through all records for the given key and explicitly compare them against the record we got from the storage engine. */ while(entry) { m_curr_row= entry->positions->bi_start; m_curr_row_end= entry->positions->bi_ends; prepare_record(table, &m_cols, false); if ((error= unpack_current_row(rli, &m_cols))) goto close_table; if (record_compare(table, &m_cols)) m_hash.next(&entry); else break; // we found a match } /** We found the entry we needed, just apply the changes. */ if (entry) { // just to be safe, copy the record from the SE to table->record[0] restore_record(table, record[1]); /** At this point, both table->record[0] and table->record[1] have the SE row that matched the one in the hash table. Thence if this is a DELETE we wouldn't need to mess around with positions anymore, but since this can be an update, we need to provide positions so that AI is unpacked correctly to table->record[0] in UPDATE implementation of do_exec_row(). */ m_curr_row= entry->positions->bi_start; m_curr_row_end= entry->positions->bi_ends; /* we don't need this entry anymore, just delete it */ if ((error= m_hash.del(entry))) goto err; if ((error= do_apply_row(rli))) { if (handle_idempotent_and_ignored_errors(rli, &error)) goto close_table; do_post_row_operations(rli, error); } } } break; case HA_ERR_RECORD_DELETED: // get next continue; case HA_ERR_KEY_NOT_FOUND: /* If the slave exec mode is idempotent or the error is skipped error, then don't break */ if (handle_idempotent_and_ignored_errors(rli, &error)) goto close_table; idempotent_errors++; continue; case HA_ERR_END_OF_FILE: default: // exception (hash is not empty and we have reached EOF or // other error happened) goto close_table; } } /** if the rbr_exec_mode is set to Idempotent, we cannot expect the hash to be empty. In such cases we count the number of idempotent errors and check if it is equal to or greater than the number of rows left in the hash. */ while (((idempotent_errors < m_hash.size()) && !m_hash.is_empty()) && (!error || (error == HA_ERR_RECORD_DELETED))); close_table: if (error == HA_ERR_RECORD_DELETED) error= 0; if (error) { table->file->print_error(error, MYF(0)); DBUG_PRINT("info", ("Failed to get next record" " (ha_rnd_next returns %d)",error)); /* we are already with errors. Keep the error code and try to close the scan anyway. */ (void) close_record_scan(); } else error= close_record_scan(); assert((m_hash.is_empty() && !error) || (!m_hash.is_empty() && ((error) || (idempotent_errors >= m_hash.size())))); err: if ((m_hash.is_empty() && !error) || (idempotent_errors >= m_hash.size())) { /** Reset the last positions, because the positions are lost while handling entries in the hash. */ m_curr_row= saved_last_m_curr_row; m_curr_row_end= saved_last_m_curr_row_end; } DBUG_RETURN(error); } int Rows_log_event::do_hash_scan_and_update(Relay_log_info const *rli) { DBUG_ENTER("Rows_log_event::do_hash_scan_and_update"); assert(m_table && m_table->in_use != NULL); // HASHING PART /* unpack the BI (and AI, if it exists) and add it to the hash map. */ if (int error= this->do_hash_row(rli)) DBUG_RETURN(error); /* We have not yet hashed all rows in the buffer. Do not proceed to the SCAN part. */ if (m_curr_row_end < m_rows_end) DBUG_RETURN (0); DBUG_PRINT("info",("Hash was populated with %d records!", m_hash.size())); assert(m_curr_row_end == m_rows_end); // SCANNING & UPDATE PART DBUG_RETURN(this->do_scan_and_update(rli)); } int Rows_log_event::do_table_scan_and_update(Relay_log_info const *rli) { int error= 0; const uchar* saved_m_curr_row= m_curr_row; TABLE* table= m_table; DBUG_ENTER("Rows_log_event::do_table_scan_and_update"); assert(m_curr_row != m_rows_end); DBUG_PRINT("info",("locating record using table scan (ha_rnd_next)")); saved_m_curr_row= m_curr_row; /** unpack the before image */ prepare_record(table, &m_cols, FALSE); if (!(error= unpack_current_row(rli, &m_cols))) { /** save a copy so that we can compare against it later */ store_record(m_table, record[1]); int restart_count= 0; // Number of times scanning has restarted from top if ((error= m_table->file->ha_rnd_init(1))) { DBUG_PRINT("info",("error initializing table scan" " (ha_rnd_init returns %d)",error)); goto end; } /* Continue until we find the right record or have made a full loop */ do { restart_ha_rnd_next: error= m_table->file->ha_rnd_next(m_table->record[0]); if (error) DBUG_PRINT("info", ("error: %s", HA_ERR(error))); switch (error) { case HA_ERR_END_OF_FILE: // restart scan from top if (++restart_count < 2) { if ((error= m_table->file->ha_rnd_init(1))) goto end; goto restart_ha_rnd_next; } break; case HA_ERR_RECORD_DELETED: // fetch next goto restart_ha_rnd_next; case 0: // we're good, check if record matches break; default: // exception goto end; } } while (restart_count < 2 && record_compare(m_table, &m_cols)); } end: assert(error != HA_ERR_RECORD_DELETED); /* either we report error or apply the changes */ if (error && error != HA_ERR_RECORD_DELETED) { DBUG_PRINT("info", ("Failed to get next record" " (ha_rnd_next returns %d)",error)); m_table->file->print_error(error, MYF(0)); } else error= do_apply_row(rli); if (!error) error= close_record_scan(); else /* we are already with errors. Keep the error code and try to close the scan anyway. */ (void) close_record_scan(); if ((get_general_type_code() == binary_log::UPDATE_ROWS_EVENT) && (saved_m_curr_row == m_curr_row)) // we need to unpack the AI { m_curr_row= m_curr_row_end; unpack_current_row(rli, &m_cols); } table->default_column_bitmaps(); DBUG_RETURN(error); } int Rows_log_event::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("Rows_log_event::do_apply_event(Relay_log_info*)"); TABLE *table= NULL; int error= 0; /* 'thd' has been set by exec_relay_log_event(), just before calling do_apply_event(). We still check here to prevent future coding errors. */ assert(rli->info_thd == thd); /* If there is no locks taken, this is the first binrow event seen after the table map events. We should then lock all the tables used in the transaction and proceed with execution of the actual event. */ if (!thd->lock) { /* Lock_tables() reads the contents of thd->lex, so they must be initialized. We also call the mysql_reset_thd_for_next_command(), since this is the logical start of the next "statement". Note that this call might reset the value of current_stmt_binlog_format, so we need to do any changes to that value after this function. */ lex_start(thd); mysql_reset_thd_for_next_command(thd); enum_gtid_statement_status state= gtid_pre_statement_checks(thd); if (state == GTID_STATEMENT_EXECUTE) { if (gtid_pre_statement_post_implicit_commit_checks(thd)) state= GTID_STATEMENT_CANCEL; } if (state == GTID_STATEMENT_CANCEL) { uint error= thd->get_stmt_da()->mysql_errno(); assert(error != 0); rli->report(ERROR_LEVEL, error, "Error executing row event: '%s'", thd->get_stmt_da()->message_text()); thd->is_slave_error= 1; DBUG_RETURN(-1); } else if (state == GTID_STATEMENT_SKIP) goto end; /* The current statement is just about to begin and has not yet modified anything. Note, all.modified is reset by mysql_reset_thd_for_next_command. */ thd->get_transaction()->reset_unsafe_rollback_flags(Transaction_ctx::STMT); /* This is a row injection, so we flag the "statement" as such. Note that this code is called both when the slave does row injections and when the BINLOG statement is used to do row injections. */ thd->lex->set_stmt_row_injection(); /* There are a few flags that are replicated with each row event. Make sure to set/clear them before executing the main body of the event. */ if (get_flags(NO_FOREIGN_KEY_CHECKS_F)) thd->variables.option_bits|= OPTION_NO_FOREIGN_KEY_CHECKS; else thd->variables.option_bits&= ~OPTION_NO_FOREIGN_KEY_CHECKS; if (get_flags(RELAXED_UNIQUE_CHECKS_F)) thd->variables.option_bits|= OPTION_RELAXED_UNIQUE_CHECKS; else thd->variables.option_bits&= ~OPTION_RELAXED_UNIQUE_CHECKS; thd->binlog_row_event_extra_data = m_extra_row_data; /* A small test to verify that objects have consistent types */ assert(sizeof(thd->variables.option_bits) == sizeof(OPTION_RELAXED_UNIQUE_CHECKS)); DBUG_EXECUTE_IF("rows_log_event_before_open_table", { const char action[] = "now SIGNAL before_open_table WAIT_FOR go_ahead_sql"; assert(!debug_sync_set_action(thd, STRING_WITH_LEN(action))); };); if (open_and_lock_tables(thd, rli->tables_to_lock, 0)) { if (thd->is_error()) { uint actual_error= thd->get_stmt_da()->mysql_errno(); if (ignored_error_code(actual_error)) { if (log_warnings > 1) rli->report(WARNING_LEVEL, actual_error, "Error executing row event: '%s'", thd->get_stmt_da()->message_text()); thd->get_stmt_da()->reset_condition_info(thd); clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); error= 0; goto end; } else { rli->report(ERROR_LEVEL, actual_error, "Error executing row event: '%s'", thd->get_stmt_da()->message_text()); thd->is_slave_error= 1; } } DBUG_RETURN(1); } /* When the open and locking succeeded, we check all tables to ensure that they still have the correct type. */ { DBUG_PRINT("debug", ("Checking compability of tables to lock - tables_to_lock: %p", rli->tables_to_lock)); /** When using RBR and MyISAM MERGE tables the base tables that make up the MERGE table can be appended to the list of tables to lock. Thus, we just check compatibility for those that tables that have a correspondent table map event (ie, those that are actually going to be accessed while applying the event). That's why the loop stops at rli->tables_to_lock_count . NOTE: The base tables are added here are removed when close_thread_tables is called. */ TABLE_LIST *table_list_ptr= rli->tables_to_lock; for (uint i=0 ; table_list_ptr && (i < rli->tables_to_lock_count); table_list_ptr= table_list_ptr->next_global, i++) { /* Below if condition takes care of skipping base tables that make up the MERGE table (which are added by open_tables() call). They are added next to the merge table in the list. For eg: If RPL_TABLE_LIST is t3->t1->t2 (where t1 and t2 are base tables for merge table 't3'), open_tables will modify the list by adding t1 and t2 again immediately after t3 in the list (*not at the end of the list*). New table_to_lock list will look like t3->t1'->t2'->t1->t2 (where t1' and t2' are TABLE_LIST objects added by open_tables() call). There is no flag(or logic) in open_tables() that can skip adding these base tables to the list. So the logic here should take care of skipping them. tables_to_lock_count logic will take care of skipping base tables that are added at the end of the list. For eg: If RPL_TABLE_LIST is t1->t2->t3, open_tables will modify the list into t1->t2->t3->t1'->t2'. t1' and t2' will be skipped because tables_to_lock_count logic in this for loop. */ if (table_list_ptr->parent_l) continue; /* We can use a down cast here since we know that every table added to the tables_to_lock is a RPL_TABLE_LIST (or child table which is skipped above). */ RPL_TABLE_LIST *ptr= static_cast<RPL_TABLE_LIST*>(table_list_ptr); assert(ptr->m_tabledef_valid); TABLE *conv_table; if (!ptr->m_tabledef.compatible_with(thd, const_cast<Relay_log_info*>(rli), ptr->table, &conv_table)) { DBUG_PRINT("debug", ("Table: %s.%s is not compatible with master", ptr->table->s->db.str, ptr->table->s->table_name.str)); if (thd->is_slave_error) { const_cast<Relay_log_info*>(rli)->slave_close_thread_tables(thd); DBUG_RETURN(ERR_BAD_TABLE_DEF); } else { thd->get_stmt_da()->reset_condition_info(thd); clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); error= 0; goto end; } } DBUG_PRINT("debug", ("Table: %s.%s is compatible with master" " - conv_table: %p", ptr->table->s->db.str, ptr->table->s->table_name.str, conv_table)); ptr->m_conv_table= conv_table; } } /* ... and then we add all the tables to the table map and but keep them in the tables to lock list. We also invalidate the query cache for all the tables, since they will now be changed. TODO [/Matz]: Maybe the query cache should not be invalidated here? It might be that a table is not changed, even though it was locked for the statement. We do know that each Rows_log_event contain at least one row, so after processing one Rows_log_event, we can invalidate the query cache for the associated table. */ TABLE_LIST *ptr= rli->tables_to_lock; for (uint i=0 ; ptr && (i < rli->tables_to_lock_count); ptr= ptr->next_global, i++) { /* Please see comment in above 'for' loop to know the reason for this if condition */ if (ptr->parent_l) continue; const_cast<Relay_log_info*>(rli)->m_table_map.set_table(ptr->table_id, ptr->table); } query_cache.invalidate_locked_for_write(rli->tables_to_lock); } table= m_table= const_cast<Relay_log_info*>(rli)->m_table_map.get_table(m_table_id); DBUG_PRINT("debug", ("m_table: 0x%lx, m_table_id: %llu", (ulong) m_table, m_table_id.id())); /* A row event comprising of a P_S table - should not be replicated (i.e executed) by the slave SQL thread. - should not be executed by the client in the form BINLOG '...' stmts. */ if (table && table->s->table_category == TABLE_CATEGORY_PERFORMANCE) table= NULL; if (table) { /* table == NULL means that this table should not be replicated (this was set up by Table_map_log_event::do_apply_event() which tested replicate-* rules). */ /* It's not needed to set_time() but 1) it continues the property that "Time" in SHOW PROCESSLIST shows how much slave is behind 2) it will be needed when we allow replication from a table with no TIMESTAMP column to a table with one. So we call set_time(), like in SBR. Presently it changes nothing. */ thd->set_time(&(common_header->when)); thd->binlog_row_event_extra_data = m_extra_row_data; /* Now we are in a statement and will stay in a statement until we see a STMT_END_F. We set this flag here, before actually applying any rows, in case the SQL thread is stopped and we need to detect that we're inside a statement and halting abruptly might cause problems when restarting. */ const_cast<Relay_log_info*>(rli)->set_flag(Relay_log_info::IN_STMT); if ( m_width == table->s->fields && bitmap_is_set_all(&m_cols)) set_flags(COMPLETE_ROWS_F); /* Set tables write and read sets. Read_set contains all slave columns (in case we are going to fetch a complete record from slave) Write_set equals the m_cols bitmap sent from master but it can be longer if slave has extra columns. */ DBUG_PRINT_BITSET("debug", "Setting table's read_set from: %s", &m_cols); /* Call mark_generated_columns() to set read_set/write_set bits of the virtual generated columns as required in order to get these computed. This is needed since all columns need to have a value in the before image for the record when doing the update (some storage engines will use this for maintaining of secondary indexes). This call is required even for DELETE events to set write_set bit in order to satisfy ASSERTs in Field_*::store functions. binlog_prepare_row_image() function, which will be called from binlogging functions (binlog_update_row() and binlog_delete_row()) will take care of removing these spurious fields required during execution but not needed for binlogging. In case of inserts, there are no spurious fields (all generated columns are required to be written into the binlog). */ bitmap_set_all(table->read_set); bitmap_set_all(table->write_set); switch (get_general_type_code()) { case binary_log::DELETE_ROWS_EVENT: bitmap_intersect(table->read_set, &m_cols); bitmap_intersect(table->write_set, &m_cols); if (m_table->vfield) m_table->mark_generated_columns(false); break; case binary_log::UPDATE_ROWS_EVENT: bitmap_intersect(table->read_set, &m_cols); bitmap_intersect(table->write_set, &m_cols_ai); if (m_table->vfield) m_table->mark_generated_columns(true); break; case binary_log::WRITE_ROWS_EVENT: /* WRITE ROWS EVENTS store the bitmap in m_cols instead of m_cols_ai */ bitmap_intersect(table->write_set, &m_cols); if (m_table->vfield) m_table->mark_generated_columns(false); break; default: assert(false); } if (thd->slave_thread) // set the mode for slave this->rbr_exec_mode= slave_exec_mode_options; else //set the mode for user thread this->rbr_exec_mode= thd->variables.rbr_exec_mode_options; // Do event specific preparations error= do_before_row_operations(rli); /* Bug#56662 Assertion failed: next_insert_id == 0, file handler.cc Don't allow generation of auto_increment value when processing rows event by setting 'MODE_NO_AUTO_VALUE_ON_ZERO'. The exception to this rule happens when the auto_inc column exists on some extra columns on the slave. In that case, do not force MODE_NO_AUTO_VALUE_ON_ZERO. */ sql_mode_t saved_sql_mode= thd->variables.sql_mode; if (!is_auto_inc_in_extra_columns()) thd->variables.sql_mode= MODE_NO_AUTO_VALUE_ON_ZERO; // row processing loop /* set the initial time of this ROWS statement if it was not done before in some other ROWS event. */ const_cast<Relay_log_info*>(rli)->set_row_stmt_start_timestamp(); const uchar *saved_m_curr_row= m_curr_row; int (Rows_log_event::*do_apply_row_ptr)(Relay_log_info const *)= NULL; /** Skip update rows events that don't have data for this slave's table. */ if ((get_general_type_code() == binary_log::UPDATE_ROWS_EVENT) && !is_any_column_signaled_for_table(table, &m_cols_ai)) goto AFTER_MAIN_EXEC_ROW_LOOP; /** If there are no columns marked in the read_set for this table, that means that we cannot lookup any row using the available BI in the binarr log. Thence, we immediatly raise an error: HA_ERR_END_OF_FILE. */ if ((m_rows_lookup_algorithm != ROW_LOOKUP_NOT_NEEDED) && !is_any_column_signaled_for_table(table, &m_cols)) { error= HA_ERR_END_OF_FILE; goto AFTER_MAIN_EXEC_ROW_LOOP; } switch (m_rows_lookup_algorithm) { case ROW_LOOKUP_HASH_SCAN: do_apply_row_ptr= &Rows_log_event::do_hash_scan_and_update; break; case ROW_LOOKUP_INDEX_SCAN: do_apply_row_ptr= &Rows_log_event::do_index_scan_and_update; break; case ROW_LOOKUP_TABLE_SCAN: do_apply_row_ptr= &Rows_log_event::do_table_scan_and_update; break; case ROW_LOOKUP_NOT_NEEDED: assert(get_general_type_code() == binary_log::WRITE_ROWS_EVENT); /* No need to scan for rows, just apply it */ do_apply_row_ptr= &Rows_log_event::do_apply_row; break; default: assert(0); error= 1; goto AFTER_MAIN_EXEC_ROW_LOOP; break; } do { error= (this->*do_apply_row_ptr)(rli); if (handle_idempotent_and_ignored_errors(rli, &error)) break; /* this advances m_curr_row */ do_post_row_operations(rli, error); } while (!error && (m_curr_row != m_rows_end)); AFTER_MAIN_EXEC_ROW_LOOP: if (saved_m_curr_row != m_curr_row && !table->file->has_transactions()) { /* Usually, the trans_commit_stmt() propagates unsafe_rollback_flags from statement to transaction level. However, we cannot rely on this when row format is in use as several events can be processed before calling this function. This happens because it is called only when the latest event generated by a statement is processed. There are however upper level functions that execute per event and check transaction's status. So if the unsafe_rollback_flags are not propagated here, this can lead to errors. For example, a transaction that updates non-transactional tables may be stopped in the middle thus leading to inconsistencies after a restart. */ thd->get_transaction()->mark_modified_non_trans_table( Transaction_ctx::STMT); thd->get_transaction()->merge_unsafe_rollback_flags(); } /* Restore the sql_mode after the rows event is processed. */ thd->variables.sql_mode= saved_sql_mode; {/* The following failure injecion works in cooperation with tests setting @@global.debug= 'd,stop_slave_middle_group'. The sql thread receives the killed status and will proceed to shutdown trying to finish incomplete events group. */ DBUG_EXECUTE_IF("stop_slave_middle_group", if (thd->get_transaction()->cannot_safely_rollback( Transaction_ctx::SESSION)) const_cast<Relay_log_info*>(rli)->abort_slave= 1;); } if ((error= do_after_row_operations(rli, error)) && ignored_error_code(convert_handler_error(error, thd, table))) { slave_rows_error_report(INFORMATION_LEVEL, error, rli, thd, table, get_type_str(), const_cast<Relay_log_info*>(rli)->get_rpl_log_name(), (ulong) common_header->log_pos); thd->get_stmt_da()->reset_condition_info(thd); clear_all_errors(thd, const_cast<Relay_log_info*>(rli)); error= 0; } } // if (table) if (error) { slave_rows_error_report(ERROR_LEVEL, error, rli, thd, table, get_type_str(), const_cast<Relay_log_info*>(rli)->get_rpl_log_name(), (ulong) common_header->log_pos); /* @todo We should probably not call reset_current_stmt_binlog_format_row() from here. Note: this applies to log_event_old.cc too. /Sven */ thd->reset_current_stmt_binlog_format_row(); thd->is_slave_error= 1; DBUG_RETURN(error); } end: if (get_flags(STMT_END_F)) { if((error= rows_event_stmt_cleanup(rli, thd))) { if (table) slave_rows_error_report(ERROR_LEVEL, thd->is_error() ? 0 : error, rli, thd, table, get_type_str(), const_cast<Relay_log_info*>(rli)->get_rpl_log_name(), (ulong) common_header->log_pos); else { rli->report(ERROR_LEVEL, thd->is_error() ? thd->get_stmt_da()->mysql_errno() : error, "Error in cleaning up after an event of type:%s; %s; the group" " log file/position: %s %lu", get_type_str(), thd->is_error() ? thd->get_stmt_da()->message_text() : "unexpected error", const_cast<Relay_log_info*>(rli)->get_rpl_log_name(), (ulong) common_header->log_pos); } } /* We are at end of the statement (STMT_END_F flag), lets clean the memory which was used from thd's mem_root now. This needs to be done only if we are here in SQL thread context. In other flow ( in case of a regular thread which can happen when the thread is applying BINLOG'...' row event) we should *not* try to free the memory here. It will be done latter in dispatch_command() after command execution is completed. */ if (thd->slave_thread) free_root(thd->mem_root, MYF(MY_KEEP_PREALLOC)); } DBUG_RETURN(error); } Log_event::enum_skip_reason Rows_log_event::do_shall_skip(Relay_log_info *rli) { /* If the slave skip counter is 1 and this event does not end a statement, then we should not start executing on the next event. Otherwise, we defer the decision to the normal skipping logic. */ if (rli->slave_skip_counter == 1 && !get_flags(STMT_END_F)) return Log_event::EVENT_SKIP_IGNORE; else return Log_event::do_shall_skip(rli); } /** The function is called at Rows_log_event statement commit time, normally from Rows_log_event::do_update_pos() and possibly from Query_log_event::do_apply_event() of the COMMIT. The function commits the last statement for engines, binlog and releases resources have been allocated for the statement. @retval 0 Ok. @retval non-zero Error at the commit. */ static int rows_event_stmt_cleanup(Relay_log_info const *rli, THD * thd) { DBUG_EXECUTE_IF("simulate_rows_event_cleanup_failure", { my_error(ER_ERROR_DURING_COMMIT, MYF(0), 1); return (1); }); int error; { /* This is the end of a statement or transaction, so close (and unlock) the tables we opened when processing the Table_map_log_event starting the statement. OBSERVER. This will clear *all* mappings, not only those that are open for the table. There is not good handle for on-close actions for tables. NOTE. Even if we have no table ('table' == 0) we still need to be here, so that we increase the group relay log position. If we didn't, we could have a group relay log position which lags behind "forever" (assume the last master's transaction is ignored by the slave because of replicate-ignore rules). */ error= thd->binlog_flush_pending_rows_event(TRUE); /* If this event is not in a transaction, the call below will, if some transactional storage engines are involved, commit the statement into them and flush the pending event to binlog. If this event is in a transaction, the call will do nothing, but a Xid_log_event will come next which will, if some transactional engines are involved, commit the transaction and flush the pending event to the binlog. If there was a deadlock the transaction should have been rolled back already. So there should be no need to rollback the transaction. */ assert(! thd->transaction_rollback_request); error|= (error ? trans_rollback_stmt(thd) : trans_commit_stmt(thd)); /* Now what if this is not a transactional engine? we still need to flush the pending event to the binlog; we did it with thd->binlog_flush_pending_rows_event(). Note that we imitate what is done for real queries: a call to ha_autocommit_or_rollback() (sometimes only if involves a transactional engine), and a call to be sure to have the pending event flushed. */ /* @todo We should probably not call reset_current_stmt_binlog_format_row() from here. Note: this applies to log_event_old.cc too Btw, the previous comment about transactional engines does not seem related to anything that happens here. /Sven */ thd->reset_current_stmt_binlog_format_row(); const_cast<Relay_log_info*>(rli)->cleanup_context(thd, 0); /* Clean sql_command value */ thd->lex->sql_command= SQLCOM_END; } return error; } /** The method either increments the relay log position or commits the current statement and increments the master group possition if the event is STMT_END_F flagged and the statement corresponds to the autocommit query (i.e replicated without wrapping in BEGIN/COMMIT) @retval 0 Success @retval non-zero Error in the statement commit */ int Rows_log_event::do_update_pos(Relay_log_info *rli) { DBUG_ENTER("Rows_log_event::do_update_pos"); int error= 0; DBUG_PRINT("info", ("flags: %s", get_flags(STMT_END_F) ? "STMT_END_F " : "")); /* Worker does not execute binlog update position logics */ assert(!is_mts_worker(rli->info_thd)); if (get_flags(STMT_END_F)) { /* Indicate that a statement is finished. Step the group log position if we are not in a transaction, otherwise increase the event log position. */ error= rli->stmt_done(common_header->log_pos); } else { rli->inc_event_relay_log_pos(); } DBUG_EXECUTE_IF( "wait_after_do_update_pos", { const char act[] = "now signal " "signal.after_do_update_pos_waiting " "wait_for " "signal.after_do_update_pos_continue"; assert(!debug_sync_set_action(current_thd, STRING_WITH_LEN(act))); };); DBUG_RETURN(error); } #endif /* !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) */ #ifndef MYSQL_CLIENT bool Rows_log_event::write_data_header(IO_CACHE *file) { uchar buf[Binary_log_event::ROWS_HEADER_LEN_V2]; // No need to init the buffer assert(m_table_id.is_valid()); DBUG_EXECUTE_IF("old_row_based_repl_4_byte_map_id_master", { int4store(buf + 0, (ulong) m_table_id.id()); int2store(buf + 4, m_flags); return (wrapper_my_b_safe_write(file, buf, 6)); }); int6store(buf + ROWS_MAPID_OFFSET, m_table_id.id()); int2store(buf + ROWS_FLAGS_OFFSET, m_flags); int rc = 0; if (likely(!log_bin_use_v1_row_events)) { /* v2 event, with variable header portion. Determine length of variable header payload */ uint16 vhlen= 2; uint16 vhpayloadlen= 0; uint16 extra_data_len= 0; if (m_extra_row_data) { extra_data_len= m_extra_row_data[EXTRA_ROW_INFO_LEN_OFFSET]; vhpayloadlen= ROWS_V_TAG_LEN + extra_data_len; } /* Var-size header len includes len itself */ int2store(buf + ROWS_VHLEN_OFFSET, vhlen + vhpayloadlen); rc= wrapper_my_b_safe_write(file, buf, Binary_log_event::ROWS_HEADER_LEN_V2); /* Write var-sized payload, if any */ if ((vhpayloadlen > 0) && (rc == 0)) { /* Add tag and extra row info */ uchar type_code= ROWS_V_EXTRAINFO_TAG; rc= wrapper_my_b_safe_write(file, &type_code, ROWS_V_TAG_LEN); if (rc==0) rc= wrapper_my_b_safe_write(file, m_extra_row_data, extra_data_len); } } else { rc= wrapper_my_b_safe_write(file, buf, Binary_log_event::ROWS_HEADER_LEN_V1); } return (rc != 0); } bool Rows_log_event::write_data_body(IO_CACHE*file) { /* Note that this should be the number of *bits*, not the number of bytes. */ uchar sbuf[sizeof(m_width) + 1]; my_ptrdiff_t const data_size= m_rows_cur - m_rows_buf; bool res= false; uchar *const sbuf_end= net_store_length(sbuf, (size_t) m_width); assert(static_cast<size_t>(sbuf_end - sbuf) <= sizeof(sbuf)); DBUG_DUMP("m_width", sbuf, (size_t) (sbuf_end - sbuf)); res= res || wrapper_my_b_safe_write(file, sbuf, (size_t) (sbuf_end - sbuf)); DBUG_DUMP("m_cols", (uchar*) m_cols.bitmap, no_bytes_in_map(&m_cols)); res= res || wrapper_my_b_safe_write(file, (uchar*) m_cols.bitmap, no_bytes_in_map(&m_cols)); /* TODO[refactor write]: Remove the "down cast" here (and elsewhere). */ if (get_general_type_code() == binary_log::UPDATE_ROWS_EVENT) { DBUG_DUMP("m_cols_ai", (uchar*) m_cols_ai.bitmap, no_bytes_in_map(&m_cols_ai)); res= res || wrapper_my_b_safe_write(file, (uchar*) m_cols_ai.bitmap, no_bytes_in_map(&m_cols_ai)); } DBUG_DUMP("rows", m_rows_buf, data_size); res= res || wrapper_my_b_safe_write(file, m_rows_buf, (size_t) data_size); return res; } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Rows_log_event::pack_info(Protocol *protocol) { char buf[256]; char const *const flagstr= get_flags(STMT_END_F) ? " flags: STMT_END_F" : ""; size_t bytes= my_snprintf(buf, sizeof(buf), "table_id: %llu%s", m_table_id.id(), flagstr); protocol->store(buf, bytes, &my_charset_bin); return 0; } #endif #ifdef MYSQL_CLIENT void Rows_log_event::print_helper(FILE *file, PRINT_EVENT_INFO *print_event_info, char const *const name) { IO_CACHE *const head= &print_event_info->head_cache; IO_CACHE *const body= &print_event_info->body_cache; if (!print_event_info->short_form) { bool const last_stmt_event= get_flags(STMT_END_F); print_header(head, print_event_info, !last_stmt_event); my_b_printf(head, "\t%s: table id %llu%s\n", name, m_table_id.id(), last_stmt_event ? " flags: STMT_END_F" : ""); print_base64(body, print_event_info, !last_stmt_event); } } #endif /************************************************************************** Table_map_log_event member functions and support functions **************************************************************************/ /** @page How replication of field metadata works. When a table map is created, the master first calls Table_map_log_event::save_field_metadata() which calculates how many values will be in the field metadata. Only those fields that require the extra data are added. The method also loops through all of the fields in the table calling the method Field::save_field_metadata() which returns the values for the field that will be saved in the metadata and replicated to the slave. Once all fields have been processed, the table map is written to the binlog adding the size of the field metadata and the field metadata to the end of the body of the table map. When a table map is read on the slave, the field metadata is read from the table map and passed to the table_def class constructor which saves the field metadata from the table map into an array based on the type of the field. Field metadata values not present (those fields that do not use extra data) in the table map are initialized as zero (0). The array size is the same as the columns for the table on the slave. Additionally, values saved for field metadata on the master are saved as a string of bytes (uchar) in the binlog. A field may require 1 or more bytes to store the information. In cases where values require multiple bytes (e.g. values > 255), the endian-safe methods are used to properly encode the values on the master and decode them on the slave. When the field metadata values are captured on the slave, they are stored in an array of type uint16. This allows the least number of casts to prevent casting bugs when the field metadata is used in comparisons of field attributes. When the field metadata is used for calculating addresses in pointer math, the type used is uint32. */ #if !defined(MYSQL_CLIENT) /** Save the field metadata based on the real_type of the field. The metadata saved depends on the type of the field. Some fields store a single byte for pack_length() while others store two bytes for field_length (max length). @retval 0 Ok. @todo We may want to consider changing the encoding of the information. Currently, the code attempts to minimize the number of bytes written to the tablemap. There are at least two other alternatives; 1) using net_store_length() to store the data allowing it to choose the number of bytes that are appropriate thereby making the code much easier to maintain (only 1 place to change the encoding), or 2) use a fixed number of bytes for each field. The problem with option 1 is that net_store_length() will use one byte if the value < 251, but 3 bytes if it is > 250. Thus, for fields like CHAR which can be no larger than 255 characters, the method will use 3 bytes when the value is > 250. Further, every value that is encoded using 2 parts (e.g., pack_length, field_length) will be numerically > 250 therefore will use 3 bytes for eah value. The problem with option 2 is less wasteful for space but does waste 1 byte for every field that does not encode 2 parts. */ int Table_map_log_event::save_field_metadata() { DBUG_ENTER("Table_map_log_event::save_field_metadata"); int index= 0; for (unsigned int i= 0; i < m_table->s->fields ; i++) { DBUG_PRINT("debug", ("field_type: %d", m_coltype[i])); index+= m_table->s->field[i]->save_field_metadata(&m_field_metadata[index]); } DBUG_RETURN(index); } #endif /* !defined(MYSQL_CLIENT) */ /* Constructor used to build an event for writing to the binary log. Mats says tbl->s lives longer than this event so it's ok to copy pointers (tbl->s->db etc) and not pointer content. */ #if !defined(MYSQL_CLIENT) Table_map_log_event::Table_map_log_event(THD *thd_arg, TABLE *tbl, const Table_id& tid, bool using_trans) : binary_log::Table_map_event(tid, tbl->s->fields, (tbl->s->db.str), ((tbl->s->db.str) ? tbl->s->db.length : 0), (tbl->s->table_name.str), (tbl->s->table_name.length)), Log_event(thd_arg, 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) { common_header->type_code= binary_log::TABLE_MAP_EVENT; m_table= tbl; m_flags= TM_BIT_LEN_EXACT_F; uchar cbuf[sizeof(m_colcnt) + 1]; uchar *cbuf_end; assert(m_table_id.is_valid()); /* In TABLE_SHARE, "db" and "table_name" are 0-terminated (see this comment in table.cc / alloc_table_share(): Use the fact the key is db/0/table_name/0 As we rely on this let's assert it. */ assert((tbl->s->db.str == 0) || (tbl->s->db.str[tbl->s->db.length] == 0)); assert(tbl->s->table_name.str[tbl->s->table_name.length] == 0); m_data_size= Binary_log_event::TABLE_MAP_HEADER_LEN; DBUG_EXECUTE_IF("old_row_based_repl_4_byte_map_id_master", m_data_size= 6;); m_data_size+= m_dblen + 2; // Include length and terminating \0 m_data_size+= m_tbllen + 2; // Include length and terminating \0 cbuf_end= net_store_length(cbuf, (size_t) m_colcnt); assert(static_cast<size_t>(cbuf_end - cbuf) <= sizeof(cbuf)); m_data_size+= (cbuf_end - cbuf) + m_colcnt; // COLCNT and column types m_coltype= (uchar *)my_malloc(key_memory_log_event, m_colcnt, MYF(MY_WME)); assert(m_colcnt == m_table->s->fields); for (unsigned int i= 0; i < m_table->s->fields; ++i) m_coltype[i]= m_table->field[i]->binlog_type(); /* Calculate a bitmap for the results of maybe_null() for all columns. The bitmap is used to determine when there is a column from the master that is not on the slave and is null and thus not in the row data during replication. */ uint num_null_bytes= (m_table->s->fields + 7) / 8; m_data_size+= num_null_bytes; /* m_null_bits is a pointer indicating which columns can have a null value in a particular table. */ m_null_bits= (uchar *)my_malloc(key_memory_log_event, num_null_bytes, MYF(MY_WME)); m_field_metadata= (uchar*)my_malloc(key_memory_log_event, (m_colcnt * 2), MYF(MY_WME)); memset(m_field_metadata, 0, (m_colcnt * 2)); if (m_null_bits != NULL && m_field_metadata != NULL && m_coltype != NULL) is_valid_param= true; /* Create an array for the field metadata and store it. */ m_field_metadata_size= save_field_metadata(); assert(m_field_metadata_size <= (m_colcnt * 2)); /* Now set the size of the data to the size of the field metadata array plus one or three bytes (see pack.c:net_store_length) for number of elements in the field metadata array. */ if (m_field_metadata_size < 251) m_data_size+= m_field_metadata_size + 1; else m_data_size+= m_field_metadata_size + 3; memset(m_null_bits, 0, num_null_bytes); for (unsigned int i= 0 ; i < m_table->s->fields ; ++i) if (m_table->field[i]->maybe_null()) m_null_bits[(i / 8)]+= 1 << (i % 8); /* Marking event to require sequential execution in MTS if the query might have updated FK-referenced db. Unlike Query_log_event where this fact is encoded through the accessed db list in the Table_map case m_flags is exploited. */ uchar dbs= thd_arg->get_binlog_accessed_db_names() ? thd_arg->get_binlog_accessed_db_names()->elements : 0; if (dbs == 1) { char *db_name= thd_arg->get_binlog_accessed_db_names()->head(); if (!strcmp(db_name, "")) m_flags |= TM_REFERRED_FK_DB_F; } } #endif /* !defined(MYSQL_CLIENT) */ /* Constructor used by slave to read the event from the binary log. */ #if defined(HAVE_REPLICATION) Table_map_log_event::Table_map_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Table_map_event(buf, event_len, description_event), Log_event(header(), footer()) #ifndef MYSQL_CLIENT ,m_table(NULL) #endif { DBUG_ENTER("Table_map_log_event::Table_map_log_event(const char*,uint,...)"); if (m_null_bits != NULL && m_field_metadata != NULL && m_coltype != NULL) is_valid_param= true; assert(header()->type_code == binary_log::TABLE_MAP_EVENT); DBUG_VOID_RETURN; } #endif Table_map_log_event::~Table_map_log_event() { if(m_null_bits) { my_free(m_null_bits); m_null_bits= NULL; } if(m_field_metadata) { my_free(m_field_metadata); m_field_metadata= NULL; } } /* Return value is an error code, one of: -1 Failure to open table [from open_tables()] 0 Success 1 No room for more tables [from set_table()] 2 Out of memory [from set_table()] 3 Wrong table definition 4 Daisy-chaining RBR with SBR not possible */ #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) enum enum_tbl_map_status { /* no duplicate identifier found */ OK_TO_PROCESS= 0, /* this table map must be filtered out */ FILTERED_OUT= 1, /* identifier mapping table with different properties */ SAME_ID_MAPPING_DIFFERENT_TABLE= 2, /* a duplicate identifier was found mapping the same table */ SAME_ID_MAPPING_SAME_TABLE= 3, /* this table must be filtered out but found an active XA transaction. XA transactions shouldn't be used with replication filters, until disabling the XA read only optimization is a supported feature. */ FILTERED_WITH_XA_ACTIVE = 4 }; /* Checks if this table map event should be processed or not. First it checks the filtering rules, and then looks for duplicate identifiers in the existing list of rli->tables_to_lock. It checks that there hasn't been any corruption by verifying that there are no duplicate entries with different properties. In some cases, some binary logs could get corrupted, showing several tables mapped to the same table_id, 0 (see: BUG#56226). Thus we do this early sanity check for such cases and avoid that the server crashes later. In some corner cases, the master logs duplicate table map events, i.e., same id, same database name, same table name (see: BUG#37137). This is different from the above as it's the same table that is mapped again to the same identifier. Thus we cannot just check for same ids and assume that the event is corrupted we need to check every property. NOTE: in the event that BUG#37137 ever gets fixed, this extra check will still be valid because we would need to support old binary logs anyway. @param rli The relay log info reference. @param table_list A list element containing the table to check against. @return OK_TO_PROCESS if there was no identifier already in rli->tables_to_lock FILTERED_OUT if the event is filtered according to the filtering rules SAME_ID_MAPPING_DIFFERENT_TABLE if the same identifier already maps a different table in rli->tables_to_lock SAME_ID_MAPPING_SAME_TABLE if the same identifier already maps the same table in rli->tables_to_lock. */ static enum_tbl_map_status check_table_map(Relay_log_info const *rli, RPL_TABLE_LIST *table_list) { DBUG_ENTER("check_table_map"); enum_tbl_map_status res= OK_TO_PROCESS; if (rli->info_thd->slave_thread /* filtering is for slave only */ && (!rpl_filter->db_ok(table_list->db) || (rpl_filter->is_on() && !rpl_filter->tables_ok("", table_list)))) if (rli->info_thd->get_transaction()->xid_state()->has_state( XID_STATE::XA_ACTIVE)) res = FILTERED_WITH_XA_ACTIVE; else res = FILTERED_OUT; else { RPL_TABLE_LIST *ptr= static_cast<RPL_TABLE_LIST*>(rli->tables_to_lock); for(uint i=0 ; ptr && (i< rli->tables_to_lock_count); ptr= static_cast<RPL_TABLE_LIST*>(ptr->next_local), i++) { if (ptr->table_id == table_list->table_id) { if (strcmp(ptr->db, table_list->db) || strcmp(ptr->alias, table_list->table_name) || ptr->lock_type != TL_WRITE) // the ::do_apply_event always sets TL_WRITE res= SAME_ID_MAPPING_DIFFERENT_TABLE; else res= SAME_ID_MAPPING_SAME_TABLE; break; } } } DBUG_PRINT("debug", ("check of table map ended up with: %u", res)); DBUG_RETURN(res); } int Table_map_log_event::do_apply_event(Relay_log_info const *rli) { RPL_TABLE_LIST *table_list; char *db_mem, *tname_mem, *ptr; size_t dummy_len; void *memory; DBUG_ENTER("Table_map_log_event::do_apply_event(Relay_log_info*)"); assert(rli->info_thd == thd); /* Step the query id to mark what columns that are actually used. */ thd->set_query_id(next_query_id()); if (!(memory= my_multi_malloc(key_memory_log_event, MYF(MY_WME), &table_list, sizeof(RPL_TABLE_LIST), &db_mem, (uint) NAME_LEN + 1, &tname_mem, (uint) NAME_LEN + 1, NullS))) DBUG_RETURN(HA_ERR_OUT_OF_MEM); my_stpcpy(db_mem, m_dbnam.c_str()); my_stpcpy(tname_mem, m_tblnam.c_str()); if (lower_case_table_names) { my_casedn_str(system_charset_info, db_mem); my_casedn_str(system_charset_info, tname_mem); } /* rewrite rules changed the database */ if (((ptr= (char*) rpl_filter->get_rewrite_db(db_mem, &dummy_len)) != db_mem)) my_stpcpy(db_mem, ptr); table_list->init_one_table(db_mem, strlen(db_mem), tname_mem, strlen(tname_mem), tname_mem, TL_WRITE); table_list->table_id= DBUG_EVALUATE_IF("inject_tblmap_same_id_maps_diff_table", 0, m_table_id.id()); table_list->updating= 1; table_list->required_type= FRMTYPE_TABLE; DBUG_PRINT("debug", ("table: %s is mapped to %llu", table_list->table_name, table_list->table_id.id())); enum_tbl_map_status tblmap_status= check_table_map(rli, table_list); if (tblmap_status == OK_TO_PROCESS) { assert(thd->lex->query_tables != table_list); /* Use placement new to construct the table_def instance in the memory allocated for it inside table_list. The memory allocated by the table_def structure (i.e., not the memory allocated *for* the table_def structure) is released inside Relay_log_info::clear_tables_to_lock() by calling the table_def destructor explicitly. */ new (&table_list->m_tabledef) table_def(m_coltype, m_colcnt, m_field_metadata, m_field_metadata_size, m_null_bits, m_flags); table_list->m_tabledef_valid= TRUE; table_list->m_conv_table= NULL; table_list->open_type= OT_BASE_ONLY; /* We record in the slave's information that the table should be locked by linking the table into the list of tables to lock. */ table_list->next_global= table_list->next_local= rli->tables_to_lock; const_cast<Relay_log_info*>(rli)->tables_to_lock= table_list; const_cast<Relay_log_info*>(rli)->tables_to_lock_count++; /* 'memory' is freed in clear_tables_to_lock */ } else // FILTERED_OUT, SAME_ID_MAPPING_* { if (tblmap_status == FILTERED_WITH_XA_ACTIVE) { if (thd->slave_thread) rli->report(ERROR_LEVEL, ER_XA_REPLICATION_FILTERS, "%s", ER_THD(thd, ER_XA_REPLICATION_FILTERS)); else /* For the cases in which a 'BINLOG' statement is set to execute in a user session */ my_printf_error(ER_XA_REPLICATION_FILTERS, "%s", MYF(0), ER_THD(thd, ER_XA_REPLICATION_FILTERS)); } /* If mapped already but with different properties, we raise an error. If mapped already but with same properties we skip the event. If filtered out we skip the event. In all three cases, we need to free the memory previously allocated. */ else if (tblmap_status == SAME_ID_MAPPING_DIFFERENT_TABLE) { /* Something bad has happened. We need to stop the slave as strange things could happen if we proceed: slave crash, wrong table being updated, ... As a consequence we push an error in this case. */ char buf[256]; my_snprintf(buf, sizeof(buf), "Found table map event mapping table id %llu which " "was already mapped but with different settings.", table_list->table_id.id()); if (thd->slave_thread) rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER(ER_SLAVE_FATAL_ERROR), buf); else /* For the cases in which a 'BINLOG' statement is set to execute in a user session */ my_printf_error(ER_SLAVE_FATAL_ERROR, ER(ER_SLAVE_FATAL_ERROR), MYF(0), buf); } my_free(memory); } DBUG_RETURN(tblmap_status == SAME_ID_MAPPING_DIFFERENT_TABLE); } Log_event::enum_skip_reason Table_map_log_event::do_shall_skip(Relay_log_info *rli) { /* If the slave skip counter is 1, then we should not start executing on the next event. */ return continue_group(rli); } int Table_map_log_event::do_update_pos(Relay_log_info *rli) { rli->inc_event_relay_log_pos(); return 0; } #endif /* !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) */ #ifndef MYSQL_CLIENT bool Table_map_log_event::write_data_header(IO_CACHE *file) { assert(m_table_id.is_valid()); uchar buf[Binary_log_event::TABLE_MAP_HEADER_LEN]; DBUG_EXECUTE_IF("old_row_based_repl_4_byte_map_id_master", { int4store(buf + 0, static_cast<uint32>(m_table_id.id())); int2store(buf + 4, m_flags); return (wrapper_my_b_safe_write(file, buf, 6)); }); int6store(buf + TM_MAPID_OFFSET, m_table_id.id()); int2store(buf + TM_FLAGS_OFFSET, m_flags); return (wrapper_my_b_safe_write(file, buf, Binary_log_event::TABLE_MAP_HEADER_LEN)); } bool Table_map_log_event::write_data_body(IO_CACHE *file) { assert(!m_dbnam.empty()); assert(!m_tblnam.empty()); /* We use only one byte per length for storage in event: */ assert(m_dblen <= 128); assert(m_tbllen <= 128); uchar const dbuf[]= { (uchar) m_dblen }; uchar const tbuf[]= { (uchar) m_tbllen }; uchar cbuf[sizeof(m_colcnt) + 1]; uchar *const cbuf_end= net_store_length(cbuf, (size_t) m_colcnt); assert(static_cast<size_t>(cbuf_end - cbuf) <= sizeof(cbuf)); /* Store the size of the field metadata. */ uchar mbuf[sizeof(m_field_metadata_size)]; uchar *const mbuf_end= net_store_length(mbuf, m_field_metadata_size); return (wrapper_my_b_safe_write(file, dbuf, sizeof(dbuf)) || wrapper_my_b_safe_write(file, (const uchar*)m_dbnam.c_str(), m_dblen+1) || wrapper_my_b_safe_write(file, tbuf, sizeof(tbuf)) || wrapper_my_b_safe_write(file, (const uchar*)m_tblnam.c_str(), m_tbllen+1) || wrapper_my_b_safe_write(file, cbuf, (size_t) (cbuf_end - cbuf)) || wrapper_my_b_safe_write(file, m_coltype, m_colcnt) || wrapper_my_b_safe_write(file, mbuf, (size_t) (mbuf_end - mbuf)) || wrapper_my_b_safe_write(file, m_field_metadata, m_field_metadata_size), wrapper_my_b_safe_write(file, m_null_bits, (m_colcnt + 7) / 8)); } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) /* Print some useful information for the SHOW BINARY LOG information field. */ #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Table_map_log_event::pack_info(Protocol *protocol) { char buf[256]; size_t bytes= my_snprintf(buf, sizeof(buf), "table_id: %llu (%s.%s)", m_table_id.id(), m_dbnam.c_str(), m_tblnam.c_str()); protocol->store(buf, bytes, &my_charset_bin); return 0; } #endif #endif #ifdef MYSQL_CLIENT void Table_map_log_event::print(FILE *, PRINT_EVENT_INFO *print_event_info) { if (!print_event_info->short_form) { print_header(&print_event_info->head_cache, print_event_info, TRUE); my_b_printf(&print_event_info->head_cache, "\tTable_map: `%s`.`%s` mapped to number %llu\n", m_dbnam.c_str(), m_tblnam.c_str(), m_table_id.id()); print_base64(&print_event_info->body_cache, print_event_info, TRUE); } } #endif /************************************************************************** Write_rows_log_event member functions **************************************************************************/ /* Constructor used to build an event for writing to the binary log. */ #if !defined(MYSQL_CLIENT) Write_rows_log_event::Write_rows_log_event(THD *thd_arg, TABLE *tbl_arg, const Table_id& tid_arg, bool is_transactional, const uchar* extra_row_info) : binary_log::Rows_event(m_type), Rows_log_event(thd_arg, tbl_arg, tid_arg, tbl_arg->write_set, is_transactional, log_bin_use_v1_row_events? binary_log::WRITE_ROWS_EVENT_V1: binary_log::WRITE_ROWS_EVENT, extra_row_info) { common_header->type_code= m_type; } #endif /* Constructor used by slave to read the event from the binary log. */ #ifdef HAVE_REPLICATION Write_rows_log_event::Write_rows_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Rows_event(buf, event_len, description_event), Rows_log_event(buf, event_len, description_event), binary_log::Write_rows_event(buf, event_len, description_event) { assert(header()->type_code == m_type); } #endif #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) int Write_rows_log_event::do_before_row_operations(const Slave_reporting_capability *const) { int error= 0; /* Increment the global status insert count variable */ if (get_flags(STMT_END_F)) thd->status_var.com_stat[SQLCOM_INSERT]++; /* Let storage engines treat this event as an INSERT command. Set 'sql_command' as SQLCOM_INSERT after the tables are locked. When locking the tables, it should be SQLCOM_END. THD::decide_logging_format which is called from "lock tables" assumes that row_events will have 'sql_command' as SQLCOM_END. */ thd->lex->sql_command= SQLCOM_INSERT; /** todo: to introduce a property for the event (handler?) which forces applying the event in the replace (idempotent) fashion. */ if ((rbr_exec_mode == RBR_EXEC_MODE_IDEMPOTENT) || (m_table->s->db_type()->db_type == DB_TYPE_NDBCLUSTER)) { /* We are using REPLACE semantics and not INSERT IGNORE semantics when writing rows, that is: new rows replace old rows. We need to inform the storage engine that it should use this behaviour. */ /* Tell the storage engine that we are using REPLACE semantics. */ thd->lex->duplicates= DUP_REPLACE; /* Pretend we're executing a REPLACE command: this is needed for InnoDB and NDB Cluster since they are not (properly) checking the lex->duplicates flag. */ thd->lex->sql_command= SQLCOM_REPLACE; /* Do not raise the error flag in case of hitting to an unique attribute */ m_table->file->extra(HA_EXTRA_IGNORE_DUP_KEY); /* NDB specific: update from ndb master wrapped as Write_rows so that the event should be applied to replace slave's row */ m_table->file->extra(HA_EXTRA_WRITE_CAN_REPLACE); /* NDB specific: if update from ndb master wrapped as Write_rows does not find the row it's assumed idempotent binlog applying is taking place; don't raise the error. */ m_table->file->extra(HA_EXTRA_IGNORE_NO_KEY); /* TODO: the cluster team (Tomas?) says that it's better if the engine knows how many rows are going to be inserted, then it can allocate needed memory from the start. */ } /* Honor next number column if present */ m_table->next_number_field= m_table->found_next_number_field; /* * Fixed Bug#45999, In RBR, Store engine of Slave auto-generates new * sequence numbers for auto_increment fields if the values of them are 0. * If generateing a sequence number is decided by the values of * table->auto_increment_field_not_null and SQL_MODE(if includes * MODE_NO_AUTO_VALUE_ON_ZERO) in update_auto_increment function. * SQL_MODE of slave sql thread is always consistency with master's. * In RBR, auto_increment fields never are NULL, except if the auto_inc * column exists only on the slave side (i.e., in an extra column * on the slave's table). */ if (!is_auto_inc_in_extra_columns()) m_table->auto_increment_field_not_null= TRUE; else { /* Here we have checked that there is an extra field on this server's table that has an auto_inc column. Mark that the auto_increment field is null and mark the read and write set bits. (There can only be one AUTO_INC column, it is always indexed and it cannot have a DEFAULT value). */ m_table->auto_increment_field_not_null= FALSE; m_table->mark_auto_increment_column(); } /** Sets it to ROW_LOOKUP_NOT_NEEDED. */ decide_row_lookup_algorithm_and_key(); assert(m_rows_lookup_algorithm==ROW_LOOKUP_NOT_NEEDED); return error; } int Write_rows_log_event::do_after_row_operations(const Slave_reporting_capability *const, int error) { int local_error= 0; /** Clear the write_set bit for auto_inc field that only existed on the destination table as an extra column. */ if (is_auto_inc_in_extra_columns()) { bitmap_clear_bit(m_table->write_set, m_table->next_number_field->field_index); bitmap_clear_bit( m_table->read_set, m_table->next_number_field->field_index); if (get_flags(STMT_END_F)) m_table->file->ha_release_auto_increment(); } m_table->next_number_field=0; m_table->auto_increment_field_not_null= FALSE; if ((rbr_exec_mode == RBR_EXEC_MODE_IDEMPOTENT) || m_table->s->db_type()->db_type == DB_TYPE_NDBCLUSTER) { m_table->file->extra(HA_EXTRA_NO_IGNORE_DUP_KEY); m_table->file->extra(HA_EXTRA_WRITE_CANNOT_REPLACE); /* resetting the extra with table->file->extra(HA_EXTRA_NO_IGNORE_NO_KEY); fires bug#27077 explanation: file->reset() performs this duty ultimately. Still todo: fix */ } if ((local_error= m_table->file->ha_end_bulk_insert())) { m_table->file->print_error(local_error, MYF(0)); } m_rows_lookup_algorithm= ROW_LOOKUP_UNDEFINED; return error? error : local_error; } #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) /* Check if there are more UNIQUE keys after the given key. */ static int last_uniq_key(TABLE *table, uint keyno) { while (++keyno < table->s->keys) if (table->key_info[keyno].flags & HA_NOSAME) return 0; return 1; } /** Check if an error is a duplicate key error. This function is used to check if an error code is one of the duplicate key error, i.e., and error code for which it is sensible to do a <code>get_dup_key()</code> to retrieve the duplicate key. @param errcode The error code to check. @return <code>true</code> if the error code is such that <code>get_dup_key()</code> will return true, <code>false</code> otherwise. */ bool is_duplicate_key_error(int errcode) { switch (errcode) { case HA_ERR_FOUND_DUPP_KEY: case HA_ERR_FOUND_DUPP_UNIQUE: return true; } return false; } /** Write the current row into event's table. The row is located in the row buffer, pointed by @c m_curr_row member. Number of columns of the row is stored in @c m_width member (it can be different from the number of columns in the table to which we insert). Bitmap @c m_cols indicates which columns are present in the row. It is assumed that event's table is already open and pointed by @c m_table. If the same record already exists in the table it can be either overwritten or an error is reported depending on the value of @c overwrite flag (error reporting not yet implemented). Note that the matching record can be different from the row we insert if we use primary keys to identify records in the table. The row to be inserted can contain values only for selected columns. The missing columns are filled with default values using @c prepare_record() function. If a matching record is found in the table and @c overwritte is true, the missing columns are taken from it. @param rli Relay log info (needed for row unpacking). @param overwrite Shall we overwrite if the row already exists or signal error (currently ignored). @returns Error code on failure, 0 on success. This method, if successful, sets @c m_curr_row_end pointer to point at the next row in the rows buffer. This is done when unpacking the row to be inserted. @note If a matching record is found, it is either updated using @c ha_update_row() or first deleted and then new record written. */ int Write_rows_log_event::write_row(const Relay_log_info *const rli, const bool overwrite) { DBUG_ENTER("write_row"); assert(m_table != NULL && thd != NULL); TABLE *table= m_table; // pointer to event's table int error; int keynum= 0; char* key= NULL; prepare_record(table, &m_cols, table->file->ht->db_type != DB_TYPE_NDBCLUSTER); /* unpack row into table->record[0] */ if ((error= unpack_current_row(rli, &m_cols))) DBUG_RETURN(error); /* When m_curr_row == m_curr_row_end, it means a row that contains nothing, so all the pointers shall be pointing to the same address, or else we have corrupt data and shall throw the error. */ DBUG_PRINT("debug",("m_rows_buf= %p, m_rows_cur= %p, m_rows_end= %p", m_rows_buf, m_rows_cur, m_rows_end)); DBUG_PRINT("debug",("m_curr_row= %p, m_curr_row_end= %p", m_curr_row, m_curr_row_end)); if (m_curr_row == m_curr_row_end && !((m_rows_buf == m_rows_cur) && (m_rows_cur == m_rows_end))) { my_error(ER_SLAVE_CORRUPT_EVENT, MYF(0)); DBUG_RETURN(ER_SLAVE_CORRUPT_EVENT); } if (m_curr_row == m_rows_buf) { /* this is the first row to be inserted, we estimate the rows with the size of the first row and use that value to initialize storage engine for bulk insertion */ assert(!(m_curr_row > m_curr_row_end)); ulong estimated_rows= 0; if (m_curr_row < m_curr_row_end) estimated_rows= (m_rows_end - m_curr_row) / (m_curr_row_end - m_curr_row); else if (m_curr_row == m_curr_row_end) estimated_rows= 1; m_table->file->ha_start_bulk_insert(estimated_rows); } /* Explicitly set the auto_inc to null to make sure that it gets an auto_generated value. */ if (is_auto_inc_in_extra_columns()) m_table->next_number_field->set_null(); #ifndef NDEBUG DBUG_DUMP("record[0]", table->record[0], table->s->reclength); DBUG_PRINT_BITSET("debug", "write_set = %s", table->write_set); DBUG_PRINT_BITSET("debug", "read_set = %s", table->read_set); #endif /* Try to write record. If a corresponding record already exists in the table, we try to change it using ha_update_row() if possible. Otherwise we delete it and repeat the whole process again. TODO: Add safety measures against infinite looping. */ m_table->mark_columns_per_binlog_row_image(); while ((error= table->file->ha_write_row(table->record[0]))) { if (error == HA_ERR_LOCK_DEADLOCK || error == HA_ERR_LOCK_WAIT_TIMEOUT || (keynum= table->file->get_dup_key(error)) < 0 || !overwrite) { DBUG_PRINT("info",("get_dup_key returns %d)", keynum)); /* Deadlock, waiting for lock or just an error from the handler such as HA_ERR_FOUND_DUPP_KEY when overwrite is false. Retrieval of the duplicate key number may fail - either because the error was not "duplicate key" error - or because the information which key is not available */ table->file->print_error(error, MYF(0)); goto error; } /* key index value is either valid in the range [0-MAX_KEY) or has value MAX_KEY as a marker for the case when no information about key can be found. In the last case we have to require that storage engine has the flag HA_DUPLICATE_POS turned on. If this invariant is false then assert will crash the server built in debug mode. For the server that was built without DEBUG we have additional check for the value of key index in the code below in order to report about error in any case. */ assert(keynum != MAX_KEY || (keynum == MAX_KEY && (table->file->ha_table_flags() & HA_DUPLICATE_POS))); /* We need to retrieve the old row into record[1] to be able to either update or delete the offending record. We either: - use ha_rnd_pos() with a row-id (available as dupp_row) to the offending row, if that is possible (MyISAM and Blackhole), or else - use ha_index_read_idx_map() with the key that is duplicated, to retrieve the offending row. */ if (table->file->ha_table_flags() & HA_DUPLICATE_POS) { DBUG_PRINT("info",("Locating offending record using ha_rnd_pos()")); if (table->file->inited && (error= table->file->ha_index_end())) { table->file->print_error(error, MYF(0)); goto error; } if ((error= table->file->ha_rnd_init(FALSE))) { table->file->print_error(error, MYF(0)); goto error; } error= table->file->ha_rnd_pos(table->record[1], table->file->dup_ref); table->file->ha_rnd_end(); if (error) { DBUG_PRINT("info",("ha_rnd_pos() returns error %d",error)); if (error == HA_ERR_RECORD_DELETED) error= HA_ERR_KEY_NOT_FOUND; table->file->print_error(error, MYF(0)); goto error; } } else { DBUG_PRINT("info",("Locating offending record using index_read_idx()")); if (table->file->extra(HA_EXTRA_FLUSH_CACHE)) { DBUG_PRINT("info",("Error when setting HA_EXTRA_FLUSH_CACHE")); error= my_errno(); goto error; } if (key == NULL) { key= static_cast<char*>(my_alloca(table->s->max_unique_length)); if (key == NULL) { DBUG_PRINT("info",("Can't allocate key buffer")); error= ENOMEM; goto error; } } if ((uint)keynum < MAX_KEY) { key_copy((uchar*)key, table->record[0], table->key_info + keynum, 0); error= table->file->ha_index_read_idx_map(table->record[1], keynum, (const uchar*)key, HA_WHOLE_KEY, HA_READ_KEY_EXACT); } else /* For the server built in non-debug mode returns error if handler::get_dup_key() returned MAX_KEY as the value of key index. */ error= HA_ERR_FOUND_DUPP_KEY; if (error) { DBUG_PRINT("info",("ha_index_read_idx_map() returns %s", HA_ERR(error))); if (error == HA_ERR_RECORD_DELETED) error= HA_ERR_KEY_NOT_FOUND; table->file->print_error(error, MYF(0)); goto error; } } /* Now, record[1] should contain the offending row. That will enable us to update it or, alternatively, delete it (so that we can insert the new row afterwards). */ /* If row is incomplete we will use the record found to fill missing columns. */ if (!get_flags(COMPLETE_ROWS_F)) { restore_record(table,record[1]); error= unpack_current_row(rli, &m_cols); } #ifndef NDEBUG DBUG_PRINT("debug",("preparing for update: before and after image")); DBUG_DUMP("record[1] (before)", table->record[1], table->s->reclength); DBUG_DUMP("record[0] (after)", table->record[0], table->s->reclength); #endif /* REPLACE is defined as either INSERT or DELETE + INSERT. If possible, we can replace it with an UPDATE, but that will not work on InnoDB if FOREIGN KEY checks are necessary. I (Matz) am not sure of the reason for the last_uniq_key() check as, but I'm guessing that it's something along the following lines. Suppose that we got the duplicate key to be a key that is not the last unique key for the table and we perform an update: then there might be another key for which the unique check will fail, so we're better off just deleting the row and inserting the correct row. */ if (last_uniq_key(table, keynum) && !table->file->referenced_by_foreign_key()) { DBUG_PRINT("info",("Updating row using ha_update_row()")); error=table->file->ha_update_row(table->record[1], table->record[0]); switch (error) { case HA_ERR_RECORD_IS_THE_SAME: DBUG_PRINT("info",("ignoring HA_ERR_RECORD_IS_THE_SAME error from" " ha_update_row()")); error= 0; case 0: break; default: DBUG_PRINT("info",("ha_update_row() returns error %d",error)); table->file->print_error(error, MYF(0)); } goto error; } else { DBUG_PRINT("info",("Deleting offending row and trying to write new one again")); if ((error= table->file->ha_delete_row(table->record[1]))) { DBUG_PRINT("info",("ha_delete_row() returns error %d",error)); table->file->print_error(error, MYF(0)); goto error; } /* Will retry ha_write_row() with the offending row removed. */ } } error: m_table->default_column_bitmaps(); DBUG_RETURN(error); } #endif int Write_rows_log_event::do_exec_row(const Relay_log_info *const rli) { assert(m_table != NULL); int error= write_row(rli, rbr_exec_mode == RBR_EXEC_MODE_IDEMPOTENT); if (error && !thd->is_error()) { assert(0); my_error(ER_UNKNOWN_ERROR, MYF(0)); } return error; } #endif /* !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) */ #ifdef MYSQL_CLIENT void Write_rows_log_event::print(FILE *file, PRINT_EVENT_INFO* print_event_info) { DBUG_EXECUTE_IF("simulate_cache_read_error", {DBUG_SET("+d,simulate_my_b_fill_error");}); Rows_log_event::print_helper(file, print_event_info, "Write_rows"); } #endif /************************************************************************** Delete_rows_log_event member functions **************************************************************************/ /* Constructor used to build an event for writing to the binary log. */ #ifndef MYSQL_CLIENT Delete_rows_log_event::Delete_rows_log_event(THD *thd_arg, TABLE *tbl_arg, const Table_id& tid, bool is_transactional, const uchar* extra_row_info) : binary_log::Rows_event(m_type), Rows_log_event(thd_arg, tbl_arg, tid, tbl_arg->read_set, is_transactional, log_bin_use_v1_row_events? binary_log::DELETE_ROWS_EVENT_V1: binary_log::DELETE_ROWS_EVENT, extra_row_info), binary_log::Delete_rows_event() { common_header->type_code= m_type; } #endif /* #if !defined(MYSQL_CLIENT) */ /* Constructor used by slave to read the event from the binary log. */ #ifdef HAVE_REPLICATION Delete_rows_log_event::Delete_rows_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Rows_event(buf, event_len, description_event), Rows_log_event(buf, event_len, description_event), binary_log::Delete_rows_event(buf, event_len, description_event) { assert(header()->type_code == m_type); } #endif #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) int Delete_rows_log_event::do_before_row_operations(const Slave_reporting_capability *const) { int error= 0; DBUG_ENTER("Delete_rows_log_event::do_before_row_operations"); /* Increment the global status delete count variable */ if (get_flags(STMT_END_F)) thd->status_var.com_stat[SQLCOM_DELETE]++; /* Let storage engines treat this event as a DELETE command. Set 'sql_command' as SQLCOM_UPDATE after the tables are locked. When locking the tables, it should be SQLCOM_END. THD::decide_logging_format which is called from "lock tables" assumes that row_events will have 'sql_command' as SQLCOM_END. */ thd->lex->sql_command= SQLCOM_DELETE; error= row_operations_scan_and_key_setup(); DBUG_RETURN(error); } int Delete_rows_log_event::do_after_row_operations(const Slave_reporting_capability *const, int error) { DBUG_ENTER("Delete_rows_log_event::do_after_row_operations"); error= row_operations_scan_and_key_teardown(error); DBUG_RETURN(error); } int Delete_rows_log_event::do_exec_row(const Relay_log_info *const rli) { int error; assert(m_table != NULL); /* m_table->record[0] contains the BI */ m_table->mark_columns_per_binlog_row_image(); error= m_table->file->ha_delete_row(m_table->record[0]); m_table->default_column_bitmaps(); return error; } #endif /* !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) */ #ifdef MYSQL_CLIENT void Delete_rows_log_event::print(FILE *file, PRINT_EVENT_INFO* print_event_info) { Rows_log_event::print_helper(file, print_event_info, "Delete_rows"); } #endif /************************************************************************** Update_rows_log_event member functions **************************************************************************/ /* Constructor used to build an event for writing to the binary log. */ #if !defined(MYSQL_CLIENT) Update_rows_log_event::Update_rows_log_event(THD *thd_arg, TABLE *tbl_arg, const Table_id& tid, bool is_transactional, const uchar* extra_row_info) : binary_log::Rows_event(m_type), Rows_log_event(thd_arg, tbl_arg, tid, tbl_arg->read_set, is_transactional, log_bin_use_v1_row_events? binary_log::UPDATE_ROWS_EVENT_V1: binary_log::UPDATE_ROWS_EVENT, extra_row_info) { common_header->type_code= m_type; init(tbl_arg->write_set); if (Rows_log_event::is_valid() && m_cols_ai.bitmap) is_valid_param= true; } void Update_rows_log_event::init(MY_BITMAP const *cols) { /* if bitmap_init fails, caught in is_valid() */ if (likely(!bitmap_init(&m_cols_ai, m_width <= sizeof(m_bitbuf_ai)*8 ? m_bitbuf_ai : NULL, m_width, false))) { /* Cols can be zero if this is a dummy binrows event */ if (likely(cols != NULL)) { memcpy(m_cols_ai.bitmap, cols->bitmap, no_bytes_in_map(cols)); create_last_word_mask(&m_cols_ai); } } } #endif /* !defined(MYSQL_CLIENT) */ Update_rows_log_event::~Update_rows_log_event() { if (m_cols_ai.bitmap) { if (m_cols_ai.bitmap == m_bitbuf_ai) // no my_malloc happened m_cols_ai.bitmap= 0; // so no my_free in bitmap_free bitmap_free(&m_cols_ai); // To pair with bitmap_init(). } } /* Constructor used by slave to read the event from the binary log. */ #ifdef HAVE_REPLICATION Update_rows_log_event::Update_rows_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Rows_event(buf, event_len, description_event), Rows_log_event(buf, event_len, description_event), binary_log::Update_rows_event(buf, event_len, description_event) { if (Rows_log_event::is_valid() && m_cols_ai.bitmap) is_valid_param= true; assert(header()->type_code== m_type); } #endif #if !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) int Update_rows_log_event::do_before_row_operations(const Slave_reporting_capability *const) { int error= 0; DBUG_ENTER("Update_rows_log_event::do_before_row_operations"); /* Increment the global status update count variable */ if (get_flags(STMT_END_F)) thd->status_var.com_stat[SQLCOM_UPDATE]++; /* Let storage engines treat this event as an UPDATE command. Set 'sql_command' as SQLCOM_UPDATE after the tables are locked. When locking the tables, it should be SQLCOM_END. THD::decide_logging_format which is called from "lock tables" assumes that row_events will have 'sql_command' as SQLCOM_END. */ thd->lex->sql_command= SQLCOM_UPDATE; error= row_operations_scan_and_key_setup(); DBUG_RETURN(error); } int Update_rows_log_event::do_after_row_operations(const Slave_reporting_capability *const, int error) { DBUG_ENTER("Update_rows_log_event::do_after_row_operations"); error= row_operations_scan_and_key_teardown(error); DBUG_RETURN(error); } int Update_rows_log_event::do_exec_row(const Relay_log_info *const rli) { assert(m_table != NULL); int error= 0; /* This is the situation after locating BI: ===|=== before image ====|=== after image ===|=== ^ ^ m_curr_row m_curr_row_end BI found in the table is stored in record[0]. We copy it to record[1] and unpack AI to record[0]. */ store_record(m_table,record[1]); m_curr_row= m_curr_row_end; /* this also updates m_curr_row_end */ if ((error= unpack_current_row(rli, &m_cols_ai))) return error; /* Now we have the right row to update. The old row (the one we're looking for) is in record[1] and the new row is in record[0]. */ DBUG_PRINT("info",("Updating row in table")); DBUG_DUMP("old record", m_table->record[1], m_table->s->reclength); DBUG_DUMP("new values", m_table->record[0], m_table->s->reclength); m_table->mark_columns_per_binlog_row_image(); error= m_table->file->ha_update_row(m_table->record[1], m_table->record[0]); if (error == HA_ERR_RECORD_IS_THE_SAME) error= 0; m_table->default_column_bitmaps(); return error; } #endif /* !defined(MYSQL_CLIENT) && defined(HAVE_REPLICATION) */ #ifdef MYSQL_CLIENT void Update_rows_log_event::print(FILE *file, PRINT_EVENT_INFO* print_event_info) { Rows_log_event::print_helper(file, print_event_info, "Update_rows"); } #endif Incident_log_event:: Incident_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Incident_event(buf, event_len, description_event), Log_event(header(), footer()) { DBUG_ENTER("Incident_log_event::Incident_log_event"); if (incident > INCIDENT_NONE && incident < INCIDENT_COUNT) is_valid_param= true; DBUG_VOID_RETURN; } Incident_log_event::~Incident_log_event() { if (message) bapi_free(message); } const char * Incident_log_event::description() const { static const char *const description[]= { "NOTHING", // Not used "LOST_EVENTS" }; DBUG_PRINT("info", ("incident: %d", incident)); return description[incident]; } #ifndef MYSQL_CLIENT int Incident_log_event::pack_info(Protocol *protocol) { char buf[256]; size_t bytes; if (message_length > 0) bytes= my_snprintf(buf, sizeof(buf), "#%d (%s)", incident, description()); else bytes= my_snprintf(buf, sizeof(buf), "#%d (%s): %s", incident, description(), message); protocol->store(buf, bytes, &my_charset_bin); return 0; } #endif #ifdef MYSQL_CLIENT void Incident_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\n# Incident: %s\nRELOAD DATABASE; # Shall generate syntax error\n", description()); } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) int Incident_log_event::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("Incident_log_event::do_apply_event"); /* It is not necessary to do GTID related check if the error 'ER_SLAVE_INCIDENT' is ignored. */ if (ignored_error_code(ER_SLAVE_INCIDENT)) { DBUG_PRINT("info", ("Ignoring Incident")); mysql_bin_log.gtid_end_transaction(thd); DBUG_RETURN(0); } enum_gtid_statement_status state= gtid_pre_statement_checks(thd); if (state == GTID_STATEMENT_EXECUTE) { if (gtid_pre_statement_post_implicit_commit_checks(thd)) state= GTID_STATEMENT_CANCEL; } if (state == GTID_STATEMENT_CANCEL) { uint error= thd->get_stmt_da()->mysql_errno(); assert(error != 0); rli->report(ERROR_LEVEL, error, "Error executing incident event: '%s'", thd->get_stmt_da()->message_text()); thd->is_slave_error= 1; DBUG_RETURN(-1); } else if (state == GTID_STATEMENT_SKIP) { /* Make slave skip the Incident event through general commands of GTID i.e. 'set gtid_next=<GTID>; begin; commit;'. */ DBUG_RETURN(0); } rli->report(ERROR_LEVEL, ER_SLAVE_INCIDENT, ER(ER_SLAVE_INCIDENT), description(), message_length > 0 ? message : "<none>"); DBUG_RETURN(1); } #endif bool Incident_log_event::write_data_header(IO_CACHE *file) { DBUG_ENTER("Incident_log_event::write_data_header"); DBUG_PRINT("enter", ("incident: %d", incident)); uchar buf[sizeof(int16)]; int2store(buf, (int16) incident); #ifndef MYSQL_CLIENT DBUG_RETURN(wrapper_my_b_safe_write(file, buf, sizeof(buf))); #else DBUG_RETURN(my_b_safe_write(file, buf, sizeof(buf))); #endif } bool Incident_log_event::write_data_body(IO_CACHE *file) { uchar tmp[1]; DBUG_ENTER("Incident_log_event::write_data_body"); tmp[0]= (uchar) message_length; crc= checksum_crc32(crc, (uchar*) tmp, 1); if (message_length > 0) { crc= checksum_crc32(crc, (uchar*) message, message_length); // todo: report a bug on write_str accepts uint but treats it as uchar } DBUG_RETURN(write_str_at_most_255_bytes(file, message, (uint) message_length)); } Ignorable_log_event::Ignorable_log_event(const char *buf, const Format_description_event *descr_event) : binary_log::Ignorable_event(buf, descr_event), Log_event(header(), footer()) { DBUG_ENTER("Ignorable_log_event::Ignorable_log_event"); is_valid_param= true; DBUG_VOID_RETURN; } Ignorable_log_event::~Ignorable_log_event() { } #ifndef MYSQL_CLIENT /* Pack info for its unrecognized ignorable event */ int Ignorable_log_event::pack_info(Protocol *protocol) { char buf[256]; size_t bytes; bytes= my_snprintf(buf, sizeof(buf), "# Unrecognized ignorable event"); protocol->store(buf, bytes, &my_charset_bin); return 0; } #endif #ifdef MYSQL_CLIENT /* Print for its unrecognized ignorable event */ void Ignorable_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { if (print_event_info->short_form) return; print_header(&print_event_info->head_cache, print_event_info, FALSE); my_b_printf(&print_event_info->head_cache, "\tIgnorable\n"); my_b_printf(&print_event_info->head_cache, "# Unrecognized ignorable event\n"); } #endif Rows_query_log_event::Rows_query_log_event(const char *buf, uint event_len, const Format_description_event *descr_event) : binary_log::Ignorable_event(buf, descr_event), Ignorable_log_event(buf, descr_event), binary_log::Rows_query_event(buf, event_len, descr_event) { is_valid_param= (m_rows_query != NULL); } #ifndef MYSQL_CLIENT int Rows_query_log_event::pack_info(Protocol *protocol) { char *buf; size_t bytes; size_t len= sizeof("# ") + strlen(m_rows_query); if (!(buf= (char*) my_malloc(key_memory_log_event, len, MYF(MY_WME)))) return 1; bytes= my_snprintf(buf, len, "# %s", m_rows_query); protocol->store(buf, bytes, &my_charset_bin); my_free(buf); return 0; } #endif #ifdef MYSQL_CLIENT void Rows_query_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { if (!print_event_info->short_form && print_event_info->verbose > 1) { IO_CACHE *const head= &print_event_info->head_cache; IO_CACHE *const body= &print_event_info->body_cache; char *token= NULL, *saveptr= NULL; char *rows_query_copy= NULL; if (!(rows_query_copy= my_strdup(key_memory_log_event, m_rows_query, MYF(MY_WME)))) return; print_header(head, print_event_info, FALSE); my_b_printf(head, "\tRows_query\n"); /* Prefix every line of a multi-line query with '#' to prevent the statement from being executed when binary log will be processed using 'mysqlbinlog --verbose --verbose'. */ for (token= my_strtok_r(rows_query_copy, "\n", &saveptr); token; token= my_strtok_r(NULL, "\n", &saveptr)) my_b_printf(head, "# %s\n", token); my_free(rows_query_copy); print_base64(body, print_event_info, true); } } #endif bool Rows_query_log_event::write_data_body(IO_CACHE *file) { DBUG_ENTER("Rows_query_log_event::write_data_body"); /* m_rows_query length will be stored using only one byte, but on read that length will be ignored and the complete query will be read. */ DBUG_RETURN(write_str_at_most_255_bytes(file, m_rows_query, strlen(m_rows_query))); } #if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION) int Rows_query_log_event::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("Rows_query_log_event::do_apply_event"); assert(rli->info_thd == thd); /* Set query for writing Rows_query log event into binlog later.*/ thd->set_query(m_rows_query, strlen(m_rows_query)); thd->set_query_for_display(m_rows_query, strlen(m_rows_query)); assert(rli->rows_query_ev == NULL); const_cast<Relay_log_info*>(rli)->rows_query_ev= this; /* Tell worker not to free the event */ worker= NULL; DBUG_EXECUTE_IF("error_on_rows_query_event_apply", { DBUG_RETURN(1); };); DBUG_RETURN(0); } #endif const char *Gtid_log_event::SET_STRING_PREFIX= "SET @@SESSION.GTID_NEXT= '"; Gtid_log_event::Gtid_log_event(const char *buffer, uint event_len, const Format_description_event *description_event) : binary_log::Gtid_event(buffer, event_len, description_event), Log_event(header(), footer()) { DBUG_ENTER("Gtid_log_event::Gtid_log_event(const char *," " uint, const Format_description_log_event *"); #ifndef NDEBUG uint8_t const common_header_len= description_event->common_header_len; uint8 const post_header_len= buffer[EVENT_TYPE_OFFSET] == binary_log::ANONYMOUS_GTID_LOG_EVENT ? description_event->post_header_len[binary_log::ANONYMOUS_GTID_LOG_EVENT - 1] : description_event->post_header_len[binary_log::GTID_LOG_EVENT - 1]; DBUG_PRINT("info", ("event_len: %u; common_header_len: %d; post_header_len: %d", event_len, common_header_len, post_header_len)); #endif is_valid_param= true; spec.type= get_type_code() == binary_log::ANONYMOUS_GTID_LOG_EVENT ? ANONYMOUS_GROUP : GTID_GROUP; sid.copy_from((uchar *)Uuid_parent_struct.bytes); spec.gtid.sidno= gtid_info_struct.rpl_gtid_sidno; //GNO sanity check if (spec.type == GTID_GROUP) { if (gtid_info_struct.rpl_gtid_gno <= 0 || gtid_info_struct.rpl_gtid_gno >= GNO_END) goto err; } else { //ANONYMOUS_GTID_LOG_EVENT if (gtid_info_struct.rpl_gtid_gno != 0) goto err; } spec.gtid.gno= gtid_info_struct.rpl_gtid_gno; DBUG_VOID_RETURN; err: is_valid_param= false; DBUG_VOID_RETURN; } #ifndef MYSQL_CLIENT Gtid_log_event::Gtid_log_event(THD* thd_arg, bool using_trans, int64 last_committed_arg, int64 sequence_number_arg, bool may_have_sbr_stmts_arg) : binary_log::Gtid_event(last_committed_arg, sequence_number_arg, may_have_sbr_stmts_arg), Log_event(thd_arg, thd_arg->variables.gtid_next.type == ANONYMOUS_GROUP ? LOG_EVENT_IGNORABLE_F : 0, using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING, header(), footer()) { DBUG_ENTER("Gtid_log_event::Gtid_log_event(THD *)"); if (thd->owned_gtid.sidno > 0) { spec.set(thd->owned_gtid); sid= thd->owned_sid; } else { assert(thd->owned_gtid.sidno == THD::OWNED_SIDNO_ANONYMOUS); spec.set_anonymous(); spec.gtid.clear(); sid.clear(); } Log_event_type event_type= (spec.type == ANONYMOUS_GROUP ? binary_log::ANONYMOUS_GTID_LOG_EVENT : binary_log::GTID_LOG_EVENT); common_header->type_code= event_type; #ifndef NDEBUG char buf[MAX_SET_STRING_LENGTH + 1]; to_string(buf); DBUG_PRINT("info", ("%s", buf)); #endif is_valid_param= true; DBUG_VOID_RETURN; } Gtid_log_event::Gtid_log_event(uint32 server_id_arg, bool using_trans, int64 last_committed_arg, int64 sequence_number_arg, bool may_have_sbr_stmts_arg, const Gtid_specification spec_arg) : binary_log::Gtid_event(last_committed_arg, sequence_number_arg, may_have_sbr_stmts_arg), Log_event(header(), footer(), using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING) { DBUG_ENTER("Gtid_log_event::Gtid_log_event(uint32, bool, int64, int64, const Gtid_specification)"); server_id= server_id_arg; common_header->unmasked_server_id= server_id_arg; is_valid_param= true; if (spec_arg.type == GTID_GROUP) { assert(spec_arg.gtid.sidno > 0); assert(spec_arg.gtid.gno > 0); assert(spec_arg.gtid.gno < GNO_END); if (spec_arg.gtid.gno <= 0 || spec_arg.gtid.gno >= GNO_END) is_valid_param= false; spec.set(spec_arg.gtid); global_sid_lock->rdlock(); sid= global_sid_map->sidno_to_sid(spec_arg.gtid.sidno); global_sid_lock->unlock(); } else { assert(spec_arg.type == ANONYMOUS_GROUP); spec.set_anonymous(); spec.gtid.clear(); sid.clear(); common_header->flags|= LOG_EVENT_IGNORABLE_F; } Log_event_type event_type= (spec.type == ANONYMOUS_GROUP ? binary_log::ANONYMOUS_GTID_LOG_EVENT : binary_log::GTID_LOG_EVENT); common_header->type_code= event_type; #ifndef NDEBUG char buf[MAX_SET_STRING_LENGTH + 1]; to_string(buf); DBUG_PRINT("info", ("%s", buf)); #endif DBUG_VOID_RETURN; } #endif #ifndef MYSQL_CLIENT int Gtid_log_event::pack_info(Protocol *protocol) { char buffer[MAX_SET_STRING_LENGTH + 1]; size_t len= to_string(buffer); protocol->store(buffer, len, &my_charset_bin); return 0; } #endif size_t Gtid_log_event::to_string(char *buf) const { char *p= buf; assert(strlen(SET_STRING_PREFIX) == SET_STRING_PREFIX_LENGTH); strcpy(p, SET_STRING_PREFIX); p+= SET_STRING_PREFIX_LENGTH; p+= spec.to_string(&sid, p); *p++= '\''; *p= '\0'; return p - buf; } #ifdef MYSQL_CLIENT void Gtid_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { char buffer[MAX_SET_STRING_LENGTH + 1]; IO_CACHE *const head= &print_event_info->head_cache; if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\t%s\tlast_committed=%llu\tsequence_number=%llu\t" "rbr_only=%s\n", get_type_code() == binary_log::GTID_LOG_EVENT ? "GTID" : "Anonymous_GTID", last_committed, sequence_number, may_have_sbr_stmts ? "no" : "yes"); } /* The applier thread can always use "READ COMMITTED" isolation for transactions containing only RBR events (Table_map + Rows). This would prevent some deadlock issues because InnoDB doesn't acquire GAP locks in "READ COMMITTED" isolation level since MySQL 5.7.18. */ if (!may_have_sbr_stmts) { my_b_printf(head, "/*!50718 SET TRANSACTION ISOLATION LEVEL " "READ COMMITTED*/%s\n", print_event_info->delimiter); } to_string(buffer); my_b_printf(head, "%s%s\n", buffer, print_event_info->delimiter); } #endif #ifdef MYSQL_SERVER uint32 Gtid_log_event::write_data_header_to_memory(uchar *buffer) { DBUG_ENTER("Gtid_log_event::write_data_header_to_memory"); uchar *ptr_buffer= buffer; /* Encode the GTID flags */ uchar gtid_flags= 0; gtid_flags|= may_have_sbr_stmts ? binary_log::Gtid_event::FLAG_MAY_HAVE_SBR : 0; *ptr_buffer= gtid_flags; ptr_buffer+= ENCODED_FLAG_LENGTH; #ifndef NDEBUG char buf[binary_log::Uuid::TEXT_LENGTH + 1]; sid.to_string(buf); DBUG_PRINT("info", ("sid=%s sidno=%d gno=%lld", buf, spec.gtid.sidno, spec.gtid.gno)); #endif sid.copy_to(ptr_buffer); ptr_buffer+= ENCODED_SID_LENGTH; #ifndef NDEBUG if (DBUG_EVALUATE_IF("send_invalid_gno_to_replica", true, false)) int8store(ptr_buffer, GNO_END); else #endif int8store(ptr_buffer, spec.gtid.gno); ptr_buffer+= ENCODED_GNO_LENGTH; *ptr_buffer= LOGICAL_TIMESTAMP_TYPECODE; ptr_buffer+= LOGICAL_TIMESTAMP_TYPECODE_LENGTH; assert((sequence_number == 0 && last_committed == 0) || (sequence_number > last_committed)); DBUG_EXECUTE_IF("set_commit_parent_100", { last_committed= max<int64>(sequence_number > 1 ? 1 : 0, sequence_number - 100); }); DBUG_EXECUTE_IF("set_commit_parent_150", { last_committed= max<int64>(sequence_number > 1 ? 1 : 0, sequence_number - 150); }); DBUG_EXECUTE_IF("feign_commit_parent", { last_committed= sequence_number; }); int8store(ptr_buffer, last_committed); int8store(ptr_buffer + 8, sequence_number); ptr_buffer+= LOGICAL_TIMESTAMP_LENGTH; assert(ptr_buffer == (buffer + POST_HEADER_LENGTH)); DBUG_RETURN(POST_HEADER_LENGTH); } bool Gtid_log_event::write_data_header(IO_CACHE *file) { DBUG_ENTER("Gtid_log_event::write_data_header"); uchar buffer[POST_HEADER_LENGTH]; write_data_header_to_memory(buffer); DBUG_RETURN(wrapper_my_b_safe_write(file, (uchar *) buffer, POST_HEADER_LENGTH)); } #endif // MYSQL_SERVER #if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION) int Gtid_log_event::do_apply_event(Relay_log_info const *rli) { DBUG_ENTER("Gtid_log_event::do_apply_event"); assert(rli->info_thd == thd); /* In rare cases it is possible that we already own a GTID (either ANONYMOUS or GTID_GROUP). This can happen if a transaction was truncated in the middle in the relay log and then next relay log begins with a Gtid_log_events without closing the transaction context from the previous relay log. In this case the only sensible thing to do is to discard the truncated transaction and move on. Note that when the applier is "GTID skipping" a transactions it owns nothing, but its gtid_next->type == GTID_GROUP. */ const Gtid_specification *gtid_next= &thd->variables.gtid_next; if (!thd->owned_gtid.is_empty() || (thd->owned_gtid.is_empty() && gtid_next->type == GTID_GROUP)) { /* Slave will execute this code if a previous Gtid_log_event was applied but the GTID wasn't consumed yet (the transaction was not committed, nor rolled back, nor skipped). On a client session we cannot do consecutive SET GTID_NEXT without a COMMIT or a ROLLBACK in the middle. Applying this event without rolling back the current transaction may lead to problems, as a "BEGIN" event following this GTID will implicitly commit the "partial transaction" and will consume the GTID. If this "partial transaction" was left in the relay log by the IO thread restarting in the middle of a transaction, you could have the partial transaction being logged with the GTID on the slave, causing data corruption on replication. */ if (thd->server_status & SERVER_STATUS_IN_TRANS) { /* This is not an error (XA is safe), just an information */ rli->report(INFORMATION_LEVEL, 0, "Rolling back unfinished transaction (no COMMIT " "or ROLLBACK in relay log). A probable cause is partial " "transaction left on relay log because of restarting IO " "thread with auto-positioning protocol."); const_cast<Relay_log_info*>(rli)->cleanup_context(thd, 1); } gtid_state->update_on_rollback(thd); } global_sid_lock->rdlock(); // make sure that sid has been converted to sidno if (spec.type == GTID_GROUP) { if (get_sidno(false) < 0) { global_sid_lock->unlock(); DBUG_RETURN(1); // out of memory } } // set_gtid_next releases global_sid_lock if (set_gtid_next(thd, spec)) // This can happen e.g. if gtid_mode is incompatible with spec. DBUG_RETURN(1); thd->set_currently_executing_gtid_for_slave_thread(); /* If the current transaction contains no changes logged with SBR we can assume this transaction as a pure row based replicated one. Based on this assumption, we can set current transaction tx_isolation to READ COMMITTED in order to avoid concurrent transactions to be blocked by InnoDB gap locks. The session tx_isolation will be restored: - When the transaction finishes with QUERY(COMMIT|ROLLBACK), as the MySQL server does for ordinary user sessions; - When applying a Xid_log_event, after committing the transaction; - When applying a XA_prepare_log_event, after preparing the transaction; - When the applier needs to abort a transaction execution. Notice that when a transaction is being "gtid skipped", its statements are not actually executed (see mysql_execute_command()). So, the call to the function that would restore the tx_isolation after finishing the transaction may not happen. */ if (DBUG_EVALUATE_IF("force_trx_as_rbr_only", true, !may_have_sbr_stmts && thd->tx_isolation > ISO_READ_COMMITTED && gtid_pre_statement_checks(thd) != GTID_STATEMENT_SKIP)) { assert(thd->get_transaction()->is_empty(Transaction_ctx::STMT)); assert(thd->get_transaction()->is_empty(Transaction_ctx::SESSION)); assert(!thd->lock); DBUG_PRINT("info", ("setting tx_isolation to READ COMMITTED")); set_tx_isolation(thd, ISO_READ_COMMITTED, true/*one_shot*/); } DBUG_RETURN(0); } int Gtid_log_event::do_update_pos(Relay_log_info *rli) { /* This event does not increment group positions. This means that if there is a failure after it has been processed, it will be automatically re-executed. */ rli->inc_event_relay_log_pos(); DBUG_EXECUTE_IF("crash_after_update_pos_gtid", sql_print_information("Crashing crash_after_update_pos_gtid."); DBUG_SUICIDE();); return 0; } Log_event::enum_skip_reason Gtid_log_event::do_shall_skip(Relay_log_info *rli) { return Log_event::continue_group(rli); } #endif Previous_gtids_log_event:: Previous_gtids_log_event(const char *buf, uint event_len, const Format_description_event *description_event) : binary_log::Previous_gtids_event(buf, event_len, description_event), Log_event(header(), footer()) { DBUG_ENTER("Previous_gtids_log_event::Previous_gtids_log_event"); if (buf != NULL) is_valid_param= true; DBUG_VOID_RETURN; } #ifndef MYSQL_CLIENT Previous_gtids_log_event::Previous_gtids_log_event(const Gtid_set *set) : binary_log::Previous_gtids_event(), Log_event(header(), footer(), Log_event::EVENT_NO_CACHE, Log_event::EVENT_IMMEDIATE_LOGGING) { DBUG_ENTER("Previous_gtids_log_event::Previous_gtids_log_event(THD *, const Gtid_set *)"); common_header->type_code= binary_log::PREVIOUS_GTIDS_LOG_EVENT; common_header->flags|= LOG_EVENT_IGNORABLE_F; global_sid_lock->assert_some_lock(); buf_size= set->get_encoded_length(); uchar *buffer= (uchar *) my_malloc(key_memory_log_event, buf_size, MYF(MY_WME)); if (buffer != NULL) { set->encode(buffer); register_temp_buf((char *)buffer); } buf= buffer; // if buf is empty, is_valid will be false if(buf != 0) is_valid_param= true; DBUG_VOID_RETURN; } #endif #ifndef MYSQL_CLIENT int Previous_gtids_log_event::pack_info(Protocol *protocol) { size_t length= 0; char *str= get_str(&length, &Gtid_set::default_string_format); if (str == NULL) return 1; protocol->store(str, length, &my_charset_bin); my_free(str); return 0; } #endif #ifdef MYSQL_CLIENT void Previous_gtids_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { IO_CACHE *const head= &print_event_info->head_cache; char *str= get_str(NULL, &Gtid_set::commented_string_format); if (str != NULL) { if (!print_event_info->short_form) { print_header(head, print_event_info, FALSE); my_b_printf(head, "\tPrevious-GTIDs\n"); } my_b_printf(head, "%s\n", str); my_free(str); } } #endif int Previous_gtids_log_event::add_to_set(Gtid_set *target) const { DBUG_ENTER("Previous_gtids_log_event::add_to_set(Gtid_set *)"); size_t end_pos= 0; size_t add_size= DBUG_EVALUATE_IF("gtid_has_extra_data", 10, 0); /* Silently ignore additional unknown data at the end of the encoding */ PROPAGATE_REPORTED_ERROR_INT(target->add_gtid_encoding(buf, buf_size + add_size, &end_pos)); assert(end_pos <= buf_size); DBUG_RETURN(0); } char *Previous_gtids_log_event::get_str( size_t *length_p, const Gtid_set::String_format *string_format) const { DBUG_ENTER("Previous_gtids_log_event::get_str(size_t *, const Gtid_set::String_format *)"); Sid_map sid_map(NULL); Gtid_set set(&sid_map, NULL); DBUG_PRINT("info", ("temp_buf=%p buf=%p", temp_buf, buf)); if (set.add_gtid_encoding(buf, buf_size) != RETURN_STATUS_OK) DBUG_RETURN(NULL); set.dbug_print("set"); size_t length= set.get_string_length(string_format); DBUG_PRINT("info", ("string length= %lu", (ulong) length)); char* str= (char *)my_malloc(key_memory_log_event, length + 1, MYF(MY_WME)); if (str != NULL) { set.to_string(str, false/*need_lock*/, string_format); if (length_p != NULL) *length_p= length; } DBUG_RETURN(str); } #ifndef MYSQL_CLIENT bool Previous_gtids_log_event::write_data_body(IO_CACHE *file) { DBUG_ENTER("Previous_gtids_log_event::write_data_body"); DBUG_PRINT("info", ("size=%d", static_cast<int>(buf_size))); bool ret= wrapper_my_b_safe_write(file, buf, buf_size); DBUG_RETURN(ret); } #endif #if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION) int Previous_gtids_log_event::do_update_pos(Relay_log_info *rli) { rli->inc_event_relay_log_pos(); return 0; } #endif /************************************************************************** Transaction_context_log_event methods **************************************************************************/ #ifndef MYSQL_CLIENT Transaction_context_log_event:: Transaction_context_log_event(const char *server_uuid_arg, bool using_trans, my_thread_id thread_id_arg, bool is_gtid_specified_arg) : binary_log::Transaction_context_event(thread_id_arg, is_gtid_specified_arg), Log_event(header(), footer(), using_trans ? Log_event::EVENT_TRANSACTIONAL_CACHE : Log_event::EVENT_STMT_CACHE, Log_event::EVENT_NORMAL_LOGGING) { DBUG_ENTER("Transaction_context_log_event::Transaction_context_log_event(THD *, const char *, ulonglong)"); common_header->flags|= LOG_EVENT_IGNORABLE_F; server_uuid= NULL; sid_map= new Sid_map(NULL); snapshot_version= new Gtid_set(sid_map); /* Copy global_sid_map to a local copy to avoid the acquisition of the global_sid_lock for operations on top of this snapshot version. The Sid_map and Gtid_executed must be read under the protection of MYSQL_BIN_LOG.LOCK_commit to avoid race conditions between ordered commits in the storage engine and gtid_state update. */ if (mysql_bin_log.get_gtid_executed(sid_map, snapshot_version)) goto err; server_uuid= my_strdup(key_memory_log_event, server_uuid_arg, MYF(MY_WME)); if (server_uuid == NULL) goto err; // These two fields are only populated on event decoding. // Encoding is done directly from snapshot_version field. encoded_snapshot_version= NULL; encoded_snapshot_version_length= 0; // Debug sync point for SQL threads. DBUG_EXECUTE_IF("debug.wait_after_set_snapshot_version_on_transaction_context_log_event", { const char act[]= "now wait_for " "signal.resume_after_set_snapshot_version_on_transaction_context_log_event"; assert(opt_debug_sync_timeout > 0); assert(!debug_sync_set_action(current_thd, STRING_WITH_LEN(act))); };); is_valid_param= true; DBUG_VOID_RETURN; err: is_valid_param= false; DBUG_VOID_RETURN; } #endif Transaction_context_log_event:: Transaction_context_log_event(const char *buffer, uint event_len, const Format_description_event *descr_event) : binary_log::Transaction_context_event(buffer, event_len, descr_event), Log_event(header(), footer()) { DBUG_ENTER("Transaction_context_log_event::Transaction_context_log_event (const char *, uint, const Format_description_event*)"); common_header->flags|= LOG_EVENT_IGNORABLE_F; sid_map= new Sid_map(NULL); snapshot_version= new Gtid_set(sid_map); if (server_uuid == NULL || encoded_snapshot_version == NULL) goto err; is_valid_param= true; DBUG_VOID_RETURN; err: is_valid_param= false; DBUG_VOID_RETURN; } Transaction_context_log_event::~Transaction_context_log_event() { DBUG_ENTER("Transaction_context_log_event::~Transaction_context_log_event"); if (server_uuid) my_free((void*)server_uuid); server_uuid= NULL; if (encoded_snapshot_version) my_free((void*) encoded_snapshot_version); encoded_snapshot_version= NULL; delete snapshot_version; delete sid_map; DBUG_VOID_RETURN; } size_t Transaction_context_log_event::to_string(char *buf, ulong len) const { DBUG_ENTER("Transaction_context_log_event::to_string"); DBUG_RETURN(my_snprintf(buf, len, "server_uuid=%s\tthread_id=%lu", server_uuid, thread_id)); } #ifndef MYSQL_CLIENT int Transaction_context_log_event::pack_info(Protocol *protocol) { DBUG_ENTER("Transaction_context_log_event::pack_info"); char buf[256]; size_t bytes= to_string(buf, 256); protocol->store(buf, bytes, &my_charset_bin); DBUG_RETURN(0); } #endif #ifdef MYSQL_CLIENT void Transaction_context_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { DBUG_ENTER("Transaction_context_log_event::print"); char buf[256]; IO_CACHE *const head= &print_event_info->head_cache; if (!print_event_info->short_form) { to_string(buf, 256); print_header(head, print_event_info, FALSE); my_b_printf(head, "Transaction_context: %s\n", buf); } DBUG_VOID_RETURN; } #endif #if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION) int Transaction_context_log_event::do_update_pos(Relay_log_info *rli) { DBUG_ENTER("Transaction_context_log_event::do_update_pos"); rli->inc_event_relay_log_pos(); DBUG_RETURN(0); } #endif size_t Transaction_context_log_event::get_data_size() { DBUG_ENTER("Transaction_context_log_event::get_data_size"); size_t size= Binary_log_event::TRANSACTION_CONTEXT_HEADER_LEN; size += strlen(server_uuid); size += get_snapshot_version_size(); size += get_data_set_size(&write_set); size += get_data_set_size(&read_set); DBUG_RETURN(size); } #ifndef MYSQL_CLIENT bool Transaction_context_log_event::write_data_header(IO_CACHE* file) { DBUG_ENTER("Transaction_context_log_event::write_data_header"); char buf[Binary_log_event::TRANSACTION_CONTEXT_HEADER_LEN]; buf[ENCODED_SERVER_UUID_LEN_OFFSET] = (char) strlen(server_uuid); int4store(buf + ENCODED_THREAD_ID_OFFSET, thread_id); buf[ENCODED_GTID_SPECIFIED_OFFSET] = gtid_specified; int4store(buf + ENCODED_SNAPSHOT_VERSION_LEN_OFFSET, get_snapshot_version_size()); int4store(buf + ENCODED_WRITE_SET_ITEMS_OFFSET, write_set.size()); int4store(buf + ENCODED_READ_SET_ITEMS_OFFSET, read_set.size()); DBUG_RETURN(wrapper_my_b_safe_write(file, (const uchar *) buf, Binary_log_event::TRANSACTION_CONTEXT_HEADER_LEN)); } bool Transaction_context_log_event::write_data_body(IO_CACHE* file) { DBUG_ENTER("Transaction_context_log_event::write_data_body"); if (wrapper_my_b_safe_write(file, (const uchar*) server_uuid, strlen(server_uuid)) || write_snapshot_version(file) || write_data_set(file, &write_set) || write_data_set(file, &read_set)) DBUG_RETURN(true); DBUG_RETURN(false); } bool Transaction_context_log_event::write_snapshot_version(IO_CACHE* file) { DBUG_ENTER("Transaction_context_log_event::write_snapshot_version"); bool result= false; uint32 len= get_snapshot_version_size(); uchar *buffer= (uchar *) my_malloc(key_memory_log_event, len, MYF(MY_WME)); if (buffer == NULL) DBUG_RETURN(true); snapshot_version->encode(buffer); if (wrapper_my_b_safe_write(file, buffer, len)) result= true; my_free(buffer); DBUG_RETURN(result); } bool Transaction_context_log_event::write_data_set(IO_CACHE* file, std::list<const char*> *set) { DBUG_ENTER("Transaction_context_log_event::write_data_set"); for (std::list<const char*>::iterator it=set->begin(); it != set->end(); ++it) { char buf[ENCODED_READ_WRITE_SET_ITEM_LEN]; const char* hash= *it; uint16 len= strlen(hash); int2store(buf, len); if (wrapper_my_b_safe_write(file, (const uchar*) buf, ENCODED_READ_WRITE_SET_ITEM_LEN) || wrapper_my_b_safe_write(file, (const uchar*) hash, len)) DBUG_RETURN(true); } DBUG_RETURN(false); } #endif bool Transaction_context_log_event::read_snapshot_version() { DBUG_ENTER("Transaction_context_log_event::read_snapshot_version"); assert(snapshot_version->is_empty()); global_sid_lock->wrlock(); enum_return_status return_status= global_sid_map->copy(sid_map); global_sid_lock->unlock(); if (return_status != RETURN_STATUS_OK) DBUG_RETURN(true); DBUG_RETURN(snapshot_version->add_gtid_encoding(encoded_snapshot_version, encoded_snapshot_version_length) != RETURN_STATUS_OK); } size_t Transaction_context_log_event::get_snapshot_version_size() { DBUG_ENTER("Transaction_context_log_event::get_snapshot_version_size"); size_t result= snapshot_version->get_encoded_length(); DBUG_RETURN(result); } int Transaction_context_log_event::get_data_set_size(std::list<const char*> *set) { DBUG_ENTER("Transaction_context_log_event::get_data_set_size"); int size= 0; for (std::list<const char*>::iterator it=set->begin(); it != set->end(); ++it) size += ENCODED_READ_WRITE_SET_ITEM_LEN + strlen(*it); DBUG_RETURN(size); } void Transaction_context_log_event::add_write_set(const char *hash) { DBUG_ENTER("Transaction_context_log_event::add_write_set"); write_set.push_back(hash); DBUG_VOID_RETURN; } void Transaction_context_log_event::add_read_set(const char *hash) { DBUG_ENTER("Transaction_context_log_event::add_read_set"); read_set.push_back(hash); DBUG_VOID_RETURN; } /************************************************************************** View_change_log_event methods **************************************************************************/ #ifndef MYSQL_CLIENT View_change_log_event::View_change_log_event(char* raw_view_id) : binary_log::View_change_event(raw_view_id), Log_event(header(), footer(), Log_event::EVENT_TRANSACTIONAL_CACHE, Log_event::EVENT_NORMAL_LOGGING) { DBUG_ENTER("View_change_log_event::View_change_log_event(char*)"); common_header->flags|= LOG_EVENT_IGNORABLE_F; if (strlen(view_id) != 0) is_valid_param= true; DBUG_VOID_RETURN; } #endif View_change_log_event:: View_change_log_event(const char *buffer, uint event_len, const Format_description_event *descr_event) : binary_log::View_change_event(buffer, event_len, descr_event), Log_event(header(), footer()) { DBUG_ENTER("View_change_log_event::View_change_log_event(const char *," " uint, const Format_description_event*)"); common_header->flags|= LOG_EVENT_IGNORABLE_F; if (strlen(view_id) != 0) is_valid_param= true; //Change the cache/logging types to allow writing to the binary log cache event_cache_type= EVENT_TRANSACTIONAL_CACHE; event_logging_type= EVENT_NORMAL_LOGGING; DBUG_VOID_RETURN; } View_change_log_event::~View_change_log_event() { DBUG_ENTER("View_change_log_event::~View_change_log_event"); certification_info.clear(); DBUG_VOID_RETURN; } size_t View_change_log_event::get_data_size() { DBUG_ENTER("View_change_log_event::get_data_size"); size_t size= Binary_log_event::VIEW_CHANGE_HEADER_LEN; size+= get_size_data_map(&certification_info); DBUG_RETURN(size); } size_t View_change_log_event::get_size_data_map(std::map<std::string, std::string> *map) { DBUG_ENTER("View_change_log_event::get_size_data_map"); size_t size= 0; std::map<std::string, std::string>::iterator iter; size+= (ENCODED_CERT_INFO_KEY_SIZE_LEN + ENCODED_CERT_INFO_VALUE_LEN) * map->size(); for (iter= map->begin(); iter!= map->end(); iter++) size+= iter->first.length() + iter->second.length(); DBUG_RETURN(size); } size_t View_change_log_event::to_string(char *buf, ulong len) const { DBUG_ENTER("View_change_log_event::to_string"); DBUG_RETURN(my_snprintf(buf, len, "view_id=%s", view_id)); } #ifndef MYSQL_CLIENT int View_change_log_event::pack_info(Protocol *protocol) { DBUG_ENTER("View_change_log_event::pack_info"); char buf[256]; size_t bytes= to_string(buf, 256); protocol->store(buf, bytes, &my_charset_bin); DBUG_RETURN(0); } #endif #ifdef MYSQL_CLIENT void View_change_log_event::print(FILE *file, PRINT_EVENT_INFO *print_event_info) { DBUG_ENTER("View_change_log_event::print"); char buf[256]; IO_CACHE *const head= &print_event_info->head_cache; if (!print_event_info->short_form) { to_string(buf, 256); print_header(head, print_event_info, FALSE); my_b_printf(head, "View_change_log_event: %s\n", buf); } DBUG_VOID_RETURN; } #endif #if defined(MYSQL_SERVER) && defined(HAVE_REPLICATION) int View_change_log_event::do_apply_event(Relay_log_info const *rli) { enum_gtid_statement_status state= gtid_pre_statement_checks(thd); if (state == GTID_STATEMENT_SKIP) return 0; if (state == GTID_STATEMENT_CANCEL || (state == GTID_STATEMENT_EXECUTE && gtid_pre_statement_post_implicit_commit_checks(thd))) { uint error= thd->get_stmt_da()->mysql_errno(); assert(error != 0); rli->report(ERROR_LEVEL, error, "Error executing View Change event: '%s'", thd->get_stmt_da()->message_text()); thd->is_slave_error= 1; return -1; } if (!opt_bin_log) { return 0; } int error= mysql_bin_log.write_event(this); if (error) rli->report(ERROR_LEVEL, ER_SLAVE_FATAL_ERROR, ER(ER_SLAVE_FATAL_ERROR), "Could not write the VIEW CHANGE event in the binary log."); return (error); } int View_change_log_event::do_update_pos(Relay_log_info *rli) { DBUG_ENTER("View_change_log_event::do_update_pos"); rli->inc_event_relay_log_pos(); DBUG_RETURN(0); } #endif #ifndef MYSQL_CLIENT bool View_change_log_event::write_data_header(IO_CACHE* file){ DBUG_ENTER("View_change_log_event::write_data_header"); char buf[Binary_log_event::VIEW_CHANGE_HEADER_LEN]; memcpy(buf, view_id, ENCODED_VIEW_ID_MAX_LEN); int8store(buf + ENCODED_SEQ_NUMBER_OFFSET, seq_number); int4store(buf + ENCODED_CERT_INFO_SIZE_OFFSET, certification_info.size()); DBUG_RETURN(wrapper_my_b_safe_write(file,(const uchar *) buf, Binary_log_event::VIEW_CHANGE_HEADER_LEN)); } bool View_change_log_event::write_data_body(IO_CACHE* file){ DBUG_ENTER("Transaction_context_log_event::write_data_body"); if (write_data_map(file, &certification_info)) DBUG_RETURN(true); DBUG_RETURN(false); } bool View_change_log_event::write_data_map(IO_CACHE* file, std::map<std::string, std::string> *map) { DBUG_ENTER("View_change_log_event::write_data_set"); bool result= false; std::map<std::string, std::string>::iterator iter; for (iter= map->begin(); iter!= map->end(); iter++) { uchar buf_key_len[ENCODED_CERT_INFO_KEY_SIZE_LEN]; uint16 key_len= iter->first.length(); int2store(buf_key_len, key_len); const char *key= iter->first.c_str(); uchar buf_value_len[ENCODED_CERT_INFO_VALUE_LEN]; uint32 value_len= iter->second.length(); int4store(buf_value_len, value_len); const char *value= iter->second.c_str(); if (wrapper_my_b_safe_write(file, buf_key_len, ENCODED_CERT_INFO_KEY_SIZE_LEN) || wrapper_my_b_safe_write(file, (const uchar*) key, key_len) || wrapper_my_b_safe_write(file, buf_value_len, ENCODED_CERT_INFO_VALUE_LEN) || wrapper_my_b_safe_write(file, (const uchar*) value, value_len)) DBUG_RETURN(result); } DBUG_RETURN(false); } #endif /* Updates the certification info map. */ void View_change_log_event::set_certification_info( std::map<std::string, std::string> *info, size_t *event_size) { DBUG_ENTER("View_change_log_event::set_certification_database_snapshot"); certification_info.clear(); *event_size = Binary_log_event::VIEW_CHANGE_HEADER_LEN; std::map<std::string, std::string>::iterator it; for(it= info->begin(); it != info->end(); ++it) { std::string key= it->first; std::string value= it->second; certification_info[key]= value; *event_size += it->first.length() + it->second.length(); } *event_size += (ENCODED_CERT_INFO_KEY_SIZE_LEN + ENCODED_CERT_INFO_VALUE_LEN) * certification_info.size(); DBUG_VOID_RETURN; } #ifdef MYSQL_CLIENT /** The default values for these variables should be values that are *incorrect*, i.e., values that cannot occur in an event. This way, they will always be printed for the first event. */ st_print_event_info::st_print_event_info() :flags2_inited(0), sql_mode_inited(0), sql_mode(0), auto_increment_increment(0),auto_increment_offset(0), charset_inited(0), lc_time_names_number(~0), charset_database_number(ILLEGAL_CHARSET_INFO_NUMBER), thread_id(0), thread_id_printed(false), base64_output_mode(BASE64_OUTPUT_UNSPEC), printed_fd_event(FALSE), have_unflushed_events(false), skipped_event_in_transaction(false) { /* Currently we only use static PRINT_EVENT_INFO objects, so zeroed at program's startup, but these explicit memset() is for the day someone creates dynamic instances. */ memset(db, 0, sizeof(db)); memset(charset, 0, sizeof(charset)); memset(time_zone_str, 0, sizeof(time_zone_str)); delimiter[0]= ';'; delimiter[1]= 0; myf const flags = MYF(MY_WME | MY_NABP); open_cached_file(&head_cache, NULL, NULL, 0, flags); open_cached_file(&body_cache, NULL, NULL, 0, flags); open_cached_file(&footer_cache, NULL, NULL, 0, flags); } #endif #if defined(HAVE_REPLICATION) && !defined(MYSQL_CLIENT) Heartbeat_log_event::Heartbeat_log_event(const char* buf, uint event_len, const Format_description_event* description_event) : binary_log::Heartbeat_event(buf, event_len, description_event), Log_event(header(), footer()) { if ((log_ident != NULL && header()->log_pos >= BIN_LOG_HEADER_SIZE)) is_valid_param= true; } #endif #ifdef MYSQL_SERVER /* This is a utility function that adds a quoted identifier into the a buffer. This also escapes any existance of the quote string inside the identifier. SYNOPSIS my_strmov_quoted_identifier thd thread handler buffer target buffer identifier the identifier to be quoted length length of the identifier */ size_t my_strmov_quoted_identifier(THD* thd, char *buffer, const char* identifier, size_t length) { int q= thd ? get_quote_char_for_identifier(thd, identifier, length) : '`'; return my_strmov_quoted_identifier_helper(q, buffer, identifier, length); } #else size_t my_strmov_quoted_identifier(char *buffer, const char* identifier) { int q= '`'; return my_strmov_quoted_identifier_helper(q, buffer, identifier, 0); } #endif size_t my_strmov_quoted_identifier_helper(int q, char *buffer, const char* identifier, size_t length) { size_t written= 0; char quote_char; size_t id_length= (length) ? length : strlen(identifier); if (q == EOF) { (void) strncpy(buffer, identifier, id_length); return id_length; } quote_char= (char) q; *buffer++= quote_char; written++; while (id_length--) { if (*identifier == quote_char) { *buffer++= quote_char; written++; } *buffer++= *identifier++; written++; } *buffer++= quote_char; return ++written; }