Server IP : 172.67.216.182 / Your IP : 162.158.163.153 Web Server : Apache System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64 User : www ( 1000) PHP Version : 7.4.33 Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /www/server/mysql/src/sql/ |
Upload File : |
/* Copyright (c) 2000, 2023, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** @file @brief This file defines all compare functions */ #include <m_ctype.h> #include "sql_select.h" #include "sql_optimizer.h" // JOIN_TAB #include "sql_parse.h" // check_stack_overrun #include "sql_time.h" // make_truncated_value_warning #include "opt_trace.h" #include "parse_tree_helpers.h" #include "template_utils.h" #include "item_json_func.h" // json_value, get_json_atom_wrapper #include <algorithm> using std::min; using std::max; #include "aggregate_check.h" static bool convert_constant_item(THD *, Item_field *, Item **); static longlong get_year_value(THD *thd, Item ***item_arg, Item **cache_arg, const Item *warn_item, bool *is_null); static Item_result item_store_type(Item_result a, Item *item, my_bool unsigned_flag) { Item_result b= item->result_type(); if (a == STRING_RESULT || b == STRING_RESULT) return STRING_RESULT; else if (a == REAL_RESULT || b == REAL_RESULT) return REAL_RESULT; else if (a == DECIMAL_RESULT || b == DECIMAL_RESULT || unsigned_flag != item->unsigned_flag) return DECIMAL_RESULT; else return INT_RESULT; } static void agg_result_type(Item_result *type, my_bool *unsigned_flag, Item **items, uint nitems) { Item **item, **item_end; *type= STRING_RESULT; *unsigned_flag= FALSE; /* Skip beginning NULL items */ for (item= items, item_end= item + nitems; item < item_end; item++) { if ((*item)->type() != Item::NULL_ITEM) { *type= (*item)->result_type(); *unsigned_flag= (*item)->unsigned_flag; item++; break; } } /* Combine result types. Note: NULL items don't affect the result */ for (; item < item_end; item++) { if ((*item)->type() != Item::NULL_ITEM) { *type= item_store_type(*type, *item, *unsigned_flag); *unsigned_flag= *unsigned_flag && (*item)->unsigned_flag; } } } /* Compare row signature of two expressions SYNOPSIS: cmp_row_type() item1 the first expression item2 the second expression DESCRIPTION The function checks that two expressions have compatible row signatures i.e. that the number of columns they return are the same and that if they are both row expressions then each component from the first expression has a row signature compatible with the signature of the corresponding component of the second expression. RETURN VALUES 1 type incompatibility has been detected 0 otherwise */ static int cmp_row_type(Item* item1, Item* item2) { uint n= item1->cols(); if (item2->check_cols(n)) return 1; for (uint i=0; i<n; i++) { if (item2->element_index(i)->check_cols(item1->element_index(i)->cols()) || (item1->element_index(i)->result_type() == ROW_RESULT && cmp_row_type(item1->element_index(i), item2->element_index(i)))) return 1; } return 0; } /** Aggregates result types from the array of items. SYNOPSIS: agg_cmp_type() type [out] the aggregated type items array of items to aggregate the type from nitems number of items in the array DESCRIPTION This function aggregates result types from the array of items. Found type supposed to be used later for comparison of values of these items. Aggregation itself is performed by the item_cmp_type() function. @param[out] type the aggregated type @param items array of items to aggregate the type from @param nitems number of items in the array @retval 1 type incompatibility has been detected @retval 0 otherwise */ static int agg_cmp_type(Item_result *type, Item **items, uint nitems) { uint i; type[0]= items[0]->result_type(); for (i= 1 ; i < nitems ; i++) { type[0]= item_cmp_type(type[0], items[i]->result_type()); /* When aggregating types of two row expressions we have to check that they have the same cardinality and that each component of the first row expression has a compatible row signature with the signature of the corresponding component of the second row expression. */ if (type[0] == ROW_RESULT && cmp_row_type(items[0], items[i])) return 1; // error found: invalid usage of rows } return 0; } /** @brief Aggregates field types from the array of items. @param[in] items array of items to aggregate the type from @paran[in] nitems number of items in the array @details This function aggregates field types from the array of items. Found type is supposed to be used later as the result field type of a multi-argument function. Aggregation itself is performed by the Field::field_type_merge() function. @note The term "aggregation" is used here in the sense of inferring the result type of a function from its argument types. @return aggregated field type. */ enum_field_types agg_field_type(Item **items, uint nitems) { uint i; if (!nitems || items[0]->result_type() == ROW_RESULT ) return (enum_field_types)-1; enum_field_types res= items[0]->field_type(); for (i= 1 ; i < nitems ; i++) res= Field::field_type_merge(res, items[i]->field_type()); return real_type_to_type(res); } /* Collects different types for comparison of first item with each other items SYNOPSIS collect_cmp_types() items Array of items to collect types from nitems Number of items in the array skip_nulls Don't collect types of NULL items if TRUE DESCRIPTION This function collects different result types for comparison of the first item in the list with each of the remaining items in the 'items' array. RETURN 0 - if row type incompatibility has been detected (see cmp_row_type) Bitmap of collected types - otherwise */ static uint collect_cmp_types(Item **items, uint nitems, bool skip_nulls= FALSE) { uint i; uint found_types; Item_result left_result= items[0]->result_type(); assert(nitems > 1); found_types= 0; for (i= 1; i < nitems ; i++) { if (skip_nulls && items[i]->type() == Item::NULL_ITEM) continue; // Skip NULL constant items if ((left_result == ROW_RESULT || items[i]->result_type() == ROW_RESULT) && cmp_row_type(items[0], items[i])) return 0; found_types|= 1U << (uint)item_cmp_type(left_result, items[i]->result_type()); } /* Even if all right-hand items are NULLs and we are skipping them all, we need at least one type bit in the found_type bitmask. */ if (skip_nulls && !found_types) found_types= 1U << (uint)left_result; return found_types; } static void my_coll_agg_error(DTCollation &c1, DTCollation &c2, const char *fname) { my_error(ER_CANT_AGGREGATE_2COLLATIONS, MYF(0), c1.collation->name,c1.derivation_name(), c2.collation->name,c2.derivation_name(), fname); } /** This implementation of the factory method also implements flattening of row constructors. Examples of flattening are: - ROW(a, b) op ROW(x, y) => a op x P b op y. - ROW(a, ROW(b, c) op ROW(x, ROW(y, z))) => a op x P b op y P c op z. P is either AND or OR, depending on the comparison operation, and this detail is left for combine(). The actual operator @i op is created by the concrete subclass in create_scalar_predicate(). */ Item_bool_func *Linear_comp_creator::create(Item *a, Item *b) const { /* Test if the arguments are row constructors and thus can be flattened into a list of ANDs or ORs. */ if (a->type() == Item::ROW_ITEM && b->type() == Item::ROW_ITEM) { if (a->cols() != b->cols()) { my_error(ER_OPERAND_COLUMNS, MYF(0), a->cols()); return NULL; } assert(a->cols() > 1); List<Item> list; for (uint i= 0; i < a->cols(); ++i) list.push_back(create(a->element_index(i), b->element_index(i))); return combine(list); } return create_scalar_predicate(a, b); } Item_bool_func *Eq_creator::create_scalar_predicate(Item *a, Item *b) const { assert(a->type() != Item::ROW_ITEM || b->type() != Item::ROW_ITEM); return new Item_func_eq(a, b); } Item_bool_func *Eq_creator::combine(List<Item> list) const { return new Item_cond_and(list); } Item_bool_func *Equal_creator::create_scalar_predicate(Item *a, Item *b) const { assert(a->type() != Item::ROW_ITEM || b->type() != Item::ROW_ITEM); return new Item_func_equal(a, b); } Item_bool_func *Equal_creator::combine(List<Item> list) const { return new Item_cond_and(list); } Item_bool_func* Ne_creator::create_scalar_predicate(Item *a, Item *b) const { assert(a->type() != Item::ROW_ITEM || b->type() != Item::ROW_ITEM); return new Item_func_ne(a, b); } Item_bool_func *Ne_creator::combine(List<Item> list) const { return new Item_cond_or(list); } Item_bool_func* Gt_creator::create(Item *a, Item *b) const { return new Item_func_gt(a, b); } Item_bool_func* Lt_creator::create(Item *a, Item *b) const { return new Item_func_lt(a, b); } Item_bool_func* Ge_creator::create(Item *a, Item *b) const { return new Item_func_ge(a, b); } Item_bool_func* Le_creator::create(Item *a, Item *b) const { return new Item_func_le(a, b); } float Item_func_not::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const float filter= args[0]->get_filtering_effect(filter_for_table, read_tables, fields_to_ignore, rows_in_table); /* If the predicate that will be negated has COND_FILTER_ALLPASS filtering it means that some dependent tables have not been read, that the predicate is of a type that filtering effect is not calculated for or something similar. In any case, the filtering effect of the inverted predicate should also be COND_FILTER_ALLPASS. */ if (filter == COND_FILTER_ALLPASS) return COND_FILTER_ALLPASS; return 1.0f - filter; } /* Test functions Most of these returns 0LL if false and 1LL if true and NULL if some arg is NULL. */ longlong Item_func_not::val_int() { assert(fixed == 1); bool value= args[0]->val_bool(); null_value=args[0]->null_value; return ((!null_value && value == 0) ? 1 : 0); } /* We put any NOT expression into parenthesis to avoid possible problems with internal view representations where any '!' is converted to NOT. It may cause a problem if '!' is used in an expression together with other operators whose precedence is lower than the precedence of '!' yet higher than the precedence of NOT. */ void Item_func_not::print(String *str, enum_query_type query_type) { str->append('('); Item_func::print(str, query_type); str->append(')'); } /** special NOT for ALL subquery. */ longlong Item_func_not_all::val_int() { assert(fixed == 1); bool value= args[0]->val_bool(); /* return TRUE if there was records in underlying select in max/min optimization (ALL subquery) */ if (empty_underlying_subquery()) return 1; null_value= args[0]->null_value; return ((!null_value && value == 0) ? 1 : 0); } bool Item_func_not_all::empty_underlying_subquery() { assert(subselect || !(test_sum_item || test_sub_item)); /* When outer argument is NULL the subquery has not yet been evaluated, we need to evaluate it to get to know whether it returns any rows to return the correct result. 'ANY' subqueries are an exception because the result would be false or null which for a top level item always mean false. The subselect->unit->item->... chain should be used instead of subselect->... to workaround subquery transformation which could make subselect->engine unusable. */ if (subselect && subselect->substype() != Item_subselect::ANY_SUBS && !subselect->unit->item->is_evaluated()) subselect->unit->item->exec(); return ((test_sum_item && !test_sum_item->any_value()) || (test_sub_item && !test_sub_item->any_value())); } void Item_func_not_all::print(String *str, enum_query_type query_type) { if (show) Item_func::print(str, query_type); else args[0]->print(str, query_type); } /** Special NOP (No OPeration) for ALL subquery. It is like Item_func_not_all. @return (return TRUE if underlying subquery do not return rows) but if subquery returns some rows it return same value as argument (TRUE/FALSE). */ longlong Item_func_nop_all::val_int() { assert(fixed == 1); longlong value= args[0]->val_int(); /* return FALSE if there was records in underlying select in max/min optimization (SAME/ANY subquery) */ if (empty_underlying_subquery()) return 0; null_value= args[0]->null_value; return (null_value || value == 0) ? 0 : 1; } /** Convert a constant item to an int and replace the original item. The function converts a constant expression or string to an integer. On successful conversion the original item is substituted for the result of the item evaluation. This is done when comparing DATE/TIME of different formats and also when comparing bigint to strings (in which case strings are converted to bigints). @param thd thread handle @param field item will be converted using the type of this field @param[in,out] item reference to the item to convert @note This function is called only at prepare stage. As all derived tables are filled only after all derived tables are prepared we do not evaluate items with subselects here because they can contain derived tables and thus we may attempt to use a table that has not been populated yet. @retval 0 Can't convert item @retval 1 Item was replaced with an integer version of the item */ static bool convert_constant_item(THD *thd, Item_field *field_item, Item **item) { Field *field= field_item->field; int result= 0; if ((*item)->const_item() && /* In case of GC it's possible that this func will be called on an already converted constant. Don't convert it again. */ !((*item)->field_type() == field_item->field_type() && (*item)->basic_const_item())) { TABLE *table= field->table; sql_mode_t orig_sql_mode= thd->variables.sql_mode; enum_check_fields orig_count_cuted_fields= thd->count_cuted_fields; my_bitmap_map *old_maps[2]; ulonglong orig_field_val= 0; /* original field value if valid */ old_maps[0]= NULL; old_maps[1]= NULL; if (table) dbug_tmp_use_all_columns(table, old_maps, table->read_set, table->write_set); /* For comparison purposes allow invalid dates like 2000-01-32 */ thd->variables.sql_mode= (orig_sql_mode & ~MODE_NO_ZERO_DATE) | MODE_INVALID_DATES; thd->count_cuted_fields= CHECK_FIELD_IGNORE; /* Store the value of the field/constant if it references an outer field because the call to save_in_field below overrides that value. Don't save field value if no data has been read yet. Outer constant values are always saved. */ bool save_field_value= (field_item->depended_from && (field_item->const_item() || !(field->table->status & (STATUS_GARBAGE | STATUS_NOT_FOUND)))); if (save_field_value) orig_field_val= field->val_int(); int rc; if (!(*item)->is_null() && (((rc= (*item)->save_in_field(field, true)) == TYPE_OK) || rc == TYPE_NOTE_TIME_TRUNCATED)) // TS-TODO { int field_cmp= 0; /* If item is a decimal value, we must reject it if it was truncated. TODO: consider doing the same for MYSQL_TYPE_YEAR,. However: we have tests which assume that things '1999' and '1991-01-01 01:01:01' can be converted to year. Testing for MYSQL_TYPE_YEAR here, would treat such literals as 'incorrect DOUBLE value'. See Bug#13580652 YEAR COLUMN CAN BE EQUAL TO 1999.1 */ if (field->type() == MYSQL_TYPE_LONGLONG) { field_cmp= stored_field_cmp_to_item(thd, field, *item); DBUG_PRINT("info", ("convert_constant_item %d", field_cmp)); } if (0 == field_cmp) { Item *tmp= field->type() == MYSQL_TYPE_TIME ? #define OLD_CMP #ifdef OLD_CMP new Item_time_with_ref(field->decimals(), field->val_time_temporal(), *item) : #else new Item_time_with_ref(max((*item)->time_precision(), field->decimals()), (*item)->val_time_temporal(), *item) : #endif field->is_temporal_with_date() ? #ifdef OLD_CMP new Item_datetime_with_ref(field->type(), field->decimals(), field->val_date_temporal(), *item) : #else new Item_datetime_with_ref(field->type(), max((*item)->datetime_precision(), field->decimals()), (*item)->val_date_temporal(), *item) : #endif new Item_int_with_ref(field->type(), field->val_int(), *item, MY_TEST(field->flags & UNSIGNED_FLAG)); if (tmp) thd->change_item_tree(item, tmp); result= 1; // Item was replaced } } /* Restore the original field value. */ if (save_field_value) { result= field->store(orig_field_val, TRUE); /* orig_field_val must be a valid value that can be restored back. */ assert(!result); } thd->variables.sql_mode= orig_sql_mode; thd->count_cuted_fields= orig_count_cuted_fields; if (table) dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_maps); } return result; } bool Item_bool_func2::convert_constant_arg(THD *thd, Item *field, Item **item) { if (field->real_item()->type() != FIELD_ITEM) return false; Item_field *field_item= (Item_field*) (field->real_item()); if (field_item->field->can_be_compared_as_longlong() && !(field_item->is_temporal_with_date() && (*item)->result_type() == STRING_RESULT)) { if (convert_constant_item(thd, field_item, item)) { cmp.set_cmp_func(this, tmp_arg, tmp_arg + 1, INT_RESULT); field->cmp_context= (*item)->cmp_context= INT_RESULT; return true; } } return false; } void Item_bool_func2::fix_length_and_dec() { max_length= 1; // Function returns 0 or 1 THD *thd; /* As some compare functions are generated after sql_yacc, we have to check for out of memory conditions here */ if (!args[0] || !args[1]) return; DBUG_ENTER("Item_bool_func2::fix_length_and_dec"); /* See agg_item_charsets() in item.cc for comments on character set and collation aggregation. */ if (args[0]->result_type() == STRING_RESULT && args[1]->result_type() == STRING_RESULT && agg_arg_charsets_for_comparison(cmp.cmp_collation, args, 2)) DBUG_VOID_RETURN; args[0]->cmp_context= args[1]->cmp_context= item_cmp_type(args[0]->result_type(), args[1]->result_type()); // Make a special case of compare with fields to get nicer DATE comparisons if (functype() == LIKE_FUNC) // Disable conversion in case of LIKE function. { set_cmp_func(); DBUG_VOID_RETURN; } /* Geometry item cannot participate in an arithmetic or string comparison or a full text search, except in equal/not equal comparison. We allow geometry arguments in equal/not equal, since such comparisons are used now and are meaningful, although it simply compares the GEOMETRY byte string rather than doing a geometric equality comparison. */ const Functype func_type= functype(); if (func_type == LT_FUNC || func_type == LE_FUNC || func_type == GE_FUNC || func_type == GT_FUNC || func_type == FT_FUNC) reject_geometry_args(arg_count, args, this); thd= current_thd; if (!thd->lex->is_ps_or_view_context_analysis()) { if (convert_constant_arg(thd, args[0], &args[1]) || convert_constant_arg(thd, args[1], &args[0])) DBUG_VOID_RETURN; } set_cmp_func(); DBUG_VOID_RETURN; } void Arg_comparator::cleanup() { if (comparators != NULL) { /* We cannot rely on (*a)->cols(), since *a may be deallocated at this point, so use comparator_count to loop. */ for (size_t i= 0; i < comparator_count; i++) { comparators[i].cleanup(); } } delete[] comparators; comparators= 0; delete_json_scalar_holder(json_scalar); json_scalar= 0; } int Arg_comparator::set_compare_func(Item_result_field *item, Item_result type) { owner= item; func= comparator_matrix[type] [is_owner_equal_func()]; switch (type) { case ROW_RESULT: { uint n= (*a)->cols(); if (n != (*b)->cols()) { my_error(ER_OPERAND_COLUMNS, MYF(0), n); comparators= 0; return 1; } if (!(comparators= new Arg_comparator[n])) return 1; comparator_count= n; for (uint i=0; i < n; i++) { if ((*a)->element_index(i)->cols() != (*b)->element_index(i)->cols()) { my_error(ER_OPERAND_COLUMNS, MYF(0), (*a)->element_index(i)->cols()); return 1; } if (comparators[i].set_cmp_func(owner, (*a)->addr(i), (*b)->addr(i), set_null)) return 1; } break; } case STRING_RESULT: { /* We must set cmp_charset here as we may be called from for an automatic generated item, like in natural join */ if (cmp_collation.set((*a)->collation, (*b)->collation, MY_COLL_CMP_CONV) || cmp_collation.derivation == DERIVATION_NONE) { my_coll_agg_error((*a)->collation, (*b)->collation, owner->func_name()); return 1; } if (cmp_collation.collation == &my_charset_bin) { /* We are using BLOB/BINARY/VARBINARY, change to compare byte by byte, without removing end space */ if (func == &Arg_comparator::compare_string) func= &Arg_comparator::compare_binary_string; else if (func == &Arg_comparator::compare_e_string) func= &Arg_comparator::compare_e_binary_string; /* As this is binary compassion, mark all fields that they can't be transformed. Otherwise we would get into trouble with comparisons like: WHERE col= 'j' AND col LIKE BINARY 'j' which would be transformed to: WHERE col= 'j' */ (*a)->walk(&Item::set_no_const_sub, Item::WALK_POSTFIX, NULL); (*b)->walk(&Item::set_no_const_sub, Item::WALK_POSTFIX, NULL); } break; } case INT_RESULT: { if ((*a)->is_temporal() && (*b)->is_temporal()) { func= is_owner_equal_func() ? &Arg_comparator::compare_e_time_packed : &Arg_comparator::compare_time_packed; } else if (func == &Arg_comparator::compare_int_signed) { if ((*a)->unsigned_flag) func= (((*b)->unsigned_flag)? &Arg_comparator::compare_int_unsigned : &Arg_comparator::compare_int_unsigned_signed); else if ((*b)->unsigned_flag) func= &Arg_comparator::compare_int_signed_unsigned; } else if (func== &Arg_comparator::compare_e_int) { if ((*a)->unsigned_flag ^ (*b)->unsigned_flag) func= &Arg_comparator::compare_e_int_diff_signedness; } break; } case DECIMAL_RESULT: break; case REAL_RESULT: { if ((*a)->decimals < NOT_FIXED_DEC && (*b)->decimals < NOT_FIXED_DEC) { precision= 5 / log_10[max((*a)->decimals, (*b)->decimals) + 1]; if (func == &Arg_comparator::compare_real) func= &Arg_comparator::compare_real_fixed; else if (func == &Arg_comparator::compare_e_real) func= &Arg_comparator::compare_e_real_fixed; } break; } default: assert(0); } return 0; } /** Parse date provided in a string to a MYSQL_TIME. @param[in] thd Thread handle @param[in] str A string to convert @param[in] warn_type Type of the timestamp for issuing the warning @param[in] warn_name Field name for issuing the warning @param[out] l_time The MYSQL_TIME objects is initialized. Parses a date provided in the string str into a MYSQL_TIME object. If the string contains an incorrect date or doesn't correspond to a date at all then a warning is issued. The warn_type and the warn_name arguments are used as the name and the type of the field when issuing the warning. If any input was discarded (trailing or non-timestamp-y characters), return value will be TRUE. @return Status flag @retval FALSE Success. @retval True Indicates failure. */ bool get_mysql_time_from_str(THD *thd, String *str, timestamp_type warn_type, const char *warn_name, MYSQL_TIME *l_time) { bool value; MYSQL_TIME_STATUS status; my_time_flags_t flags= TIME_FUZZY_DATE | TIME_INVALID_DATES; if (thd->variables.sql_mode & MODE_NO_ZERO_IN_DATE) flags|= TIME_NO_ZERO_IN_DATE; if (thd->variables.sql_mode & MODE_NO_ZERO_DATE) flags|= TIME_NO_ZERO_DATE; if (!str_to_datetime(str, l_time, flags, &status) && (l_time->time_type == MYSQL_TIMESTAMP_DATETIME || l_time->time_type == MYSQL_TIMESTAMP_DATE)) /* Do not return yet, we may still want to throw a "trailing garbage" warning. */ value= FALSE; else { value= TRUE; status.warnings= MYSQL_TIME_WARN_TRUNCATED; /* force warning */ } if (status.warnings > 0) make_truncated_value_warning(thd, Sql_condition::SL_WARNING, ErrConvString(str), warn_type, warn_name); return value; } /** @brief Convert date provided in a string to its packed temporal int representation. @param[in] thd thread handle @param[in] str a string to convert @param[in] warn_type type of the timestamp for issuing the warning @param[in] warn_name field name for issuing the warning @param[out] error_arg could not extract a DATE or DATETIME @details Convert date provided in the string str to the int representation. If the string contains wrong date or doesn't contain it at all then a warning is issued. The warn_type and the warn_name arguments are used as the name and the type of the field when issuing the warning. @return converted value. 0 on error and on zero-dates -- check 'failure' */ static ulonglong get_date_from_str(THD *thd, String *str, timestamp_type warn_type, const char *warn_name, bool *error_arg) { MYSQL_TIME l_time; *error_arg= get_mysql_time_from_str(thd, str, warn_type, warn_name, &l_time); if (*error_arg) return 0; return TIME_to_longlong_datetime_packed(&l_time); } /** Check if str_arg is a constant and convert it to datetime packed value. Note, const_value may stay untouched, so the caller is responsible to initialize it. @param date_arg date argument, it's name is used for error reporting. @param str_arg string argument to get datetime value from. @param[out] const_value the converted value is stored here, if not NULL. @return true on error, false on success, false if str_arg is not a const. */ bool Arg_comparator::get_date_from_const(Item *date_arg, Item *str_arg, ulonglong *const_value) { THD *thd= current_thd; /* Do not cache GET_USER_VAR() function as its const_item() may return TRUE for the current thread but it still may change during the execution. Don't use cache while in the context analysis mode only (i.e. for EXPLAIN/CREATE VIEW and similar queries). Cache is useless in such cases and can cause problems. For example evaluating subqueries can confuse storage engines since in context analysis mode tables aren't locked. */ if (!thd->lex->is_ps_or_view_context_analysis() && str_arg->const_item() && (str_arg->type() != Item::FUNC_ITEM || ((Item_func*) str_arg)->functype() != Item_func::GUSERVAR_FUNC)) { ulonglong value; if (str_arg->field_type() == MYSQL_TYPE_TIME) { // Convert from TIME to DATETIME value= str_arg->val_date_temporal(); if (str_arg->null_value) return true; } else { // Convert from string to DATETIME assert(str_arg->result_type() == STRING_RESULT); bool error; String tmp, *str_val= 0; timestamp_type t_type= (date_arg->field_type() == MYSQL_TYPE_DATE ? MYSQL_TIMESTAMP_DATE : MYSQL_TIMESTAMP_DATETIME); str_val= str_arg->val_str(&tmp); if (str_arg->null_value) return true; value= get_date_from_str(thd, str_val, t_type, date_arg->item_name.ptr(), &error); if (error) return true; } if (const_value) *const_value= value; } return false; } /* Check whether compare_datetime() can be used to compare items. SYNOPSIS Arg_comparator::can_compare_as_dates() a, b [in] items to be compared const_value [out] converted value of the string constant, if any DESCRIPTION Check several cases when the DATE/DATETIME comparator should be used. The following cases are checked: 1. Both a and b is a DATE/DATETIME field/function returning string or int result. 2. Only a or b is a DATE/DATETIME field/function returning string or int result and the other item (b or a) is an item with string result. If the second item is a constant one then it's checked to be convertible to the DATE/DATETIME type. If the constant can't be converted to a DATE/DATETIME then the compare_datetime() comparator isn't used and the warning about wrong DATE/DATETIME value is issued. In all other cases (date-[int|real|decimal]/[int|real|decimal]-date) the comparison is handled by other comparators. If the datetime comparator can be used and one the operands of the comparison is a string constant that was successfully converted to a DATE/DATETIME type then the result of the conversion is returned in the const_value if it is provided. If there is no constant or compare_datetime() isn't applicable then the *const_value remains unchanged. @return true if can compare as dates, false otherwise. */ bool Arg_comparator::can_compare_as_dates(Item *a, Item *b, ulonglong *const_value) { if (a->type() == Item::ROW_ITEM || b->type() == Item::ROW_ITEM) return false; if (a->is_temporal_with_date()) { if (b->is_temporal_with_date()) // date[time] + date { return true; } else if (b->result_type() == STRING_RESULT) // date[time] + string { return !get_date_from_const(a, b, const_value); } else return false; // date[time] + number } else if (b->is_temporal_with_date() && a->result_type() == STRING_RESULT) // string + date[time] { return !get_date_from_const(b, a, const_value); } else return false; // No date[time] items found } /* Retrieves correct TIME value from the given item. SYNOPSIS get_time_value() thd thread handle item_arg [in/out] item to retrieve TIME value from cache_arg [in/out] pointer to place to store the cache item to warn_item [in] unused is_null [out] TRUE <=> the item_arg is null DESCRIPTION Retrieves the correct TIME value from given item for comparison by the compare_datetime() function. If item's result can be compared as longlong then its int value is used and a value returned by get_time function is used otherwise. If an item is a constant one then its value is cached and it isn't get parsed again. An Item_cache_int object is used for for cached values. It seamlessly substitutes the original item. The cache item is marked as non-constant to prevent re-caching it again. RETURN obtained value */ longlong get_time_value(THD *thd, Item ***item_arg, Item **cache_arg, const Item *warn_item, bool *is_null) { longlong value; Item *item= **item_arg; /* Note, it's wrong to assume that we always get a TIME expression or NULL here: assert(item->field_type() == MYSQL_TYPE_TIME || item->field_type() == MYSQL_TYPE_NULL); because when this condition is optimized: WHERE time_column=DATE(NULL) AND time_column=TIME(NULL); rhe first AND part is eliminated and DATE(NULL) is substituted to the second AND part like this: WHERE DATE(NULL) = TIME(NULL) // as TIME whose Arg_comparator has already get_time_value set for both arguments. Therefore, get_time_value is executed for DATE(NULL). This condition is further evaluated as impossible condition. TS-TODO: perhaps such cases should be evaluated without calling get_time_value at all. See a similar comment in Arg_comparator::compare_time_packed. */ value= item->val_time_temporal(); *is_null= item->null_value; /* Do not cache GET_USER_VAR() function as its const_item() may return TRUE for the current thread but it still may change during the execution. */ if (item->const_item() && cache_arg && item->type() != Item::CACHE_ITEM && (item->type() != Item::FUNC_ITEM || ((Item_func*)item)->functype() != Item_func::GUSERVAR_FUNC)) { Item_cache_datetime *cache= new Item_cache_datetime(item->field_type()); /* Mark the cache as non-const to prevent re-caching. */ cache->set_used_tables(1); cache->store(item, value); *cache_arg= cache; *item_arg= cache_arg; } return value; } /** Sets compare functions for various datatypes. NOTE The result type of a comparison is chosen by item_cmp_type(). Here we override the chosen result type for certain expression containing date or time or decimal expressions. */ int Arg_comparator::set_cmp_func(Item_result_field *owner_arg, Item **a1, Item **a2, Item_result type) { ulonglong const_value= (ulonglong)-1; owner= owner_arg; set_null= set_null && owner_arg; a= a1; b= a2; if (type != ROW_RESULT && (((*a)->result_type() == STRING_RESULT && (*a)->field_type() == MYSQL_TYPE_JSON) || ((*b)->result_type() == STRING_RESULT && (*b)->field_type() == MYSQL_TYPE_JSON))) { // Use the JSON comparator if at least one of the arguments is JSON. is_nulls_eq= is_owner_equal_func(); func= &Arg_comparator::compare_json; return 0; } if (can_compare_as_dates(*a, *b, &const_value)) { a_cache= 0; b_cache= 0; if (const_value != (ulonglong)-1) { /* cache_converted_constant can't be used here because it can't correctly convert a DATETIME value from string to int representation. */ Item_cache_datetime *cache= new Item_cache_datetime(MYSQL_TYPE_DATETIME); /* Mark the cache as non-const to prevent re-caching. */ cache->set_used_tables(1); if (!(*a)->is_temporal_with_date()) { cache->store((*a), const_value); a_cache= cache; a= &a_cache; } else { cache->store((*b), const_value); b_cache= cache; b= &b_cache; } } is_nulls_eq= is_owner_equal_func(); func= &Arg_comparator::compare_datetime; get_value_a_func= &get_datetime_value; get_value_b_func= &get_datetime_value; cmp_collation.set(&my_charset_numeric); set_cmp_context_for_datetime(); return 0; } else if ((type == STRING_RESULT || // When comparing time field and cached/converted time constant type == REAL_RESULT) && (*a)->field_type() == MYSQL_TYPE_TIME && (*b)->field_type() == MYSQL_TYPE_TIME) { /* Compare TIME values as integers. */ a_cache= 0; b_cache= 0; is_nulls_eq= is_owner_equal_func(); func= &Arg_comparator::compare_datetime; get_value_a_func= &get_time_value; get_value_b_func= &get_time_value; set_cmp_context_for_datetime(); return 0; } else if (type == STRING_RESULT && (*a)->result_type() == STRING_RESULT && (*b)->result_type() == STRING_RESULT) { DTCollation coll; coll.set((*a)->collation, (*b)->collation, MY_COLL_CMP_CONV); if (agg_item_set_converter(coll, owner->func_name(), a, 1, MY_COLL_CMP_CONV, 1) || agg_item_set_converter(coll, owner->func_name(), b, 1, MY_COLL_CMP_CONV, 1)) return true; } else if (try_year_cmp_func(type)) { return 0; } else if (type == REAL_RESULT && (((*a)->result_type() == DECIMAL_RESULT && !(*a)->const_item() && (*b)->result_type() == STRING_RESULT && (*b)->const_item()) || ((*b)->result_type() == DECIMAL_RESULT && !(*b)->const_item() && (*a)->result_type() == STRING_RESULT && (*a)->const_item()))) { /* <non-const decimal expression> <cmp> <const string expression> or <const string expression> <cmp> <non-const decimal expression> Do comparison as decimal rather than float, in order not to lose precision. */ type= DECIMAL_RESULT; } THD *thd= current_thd; a= cache_converted_constant(thd, a, &a_cache, type); b= cache_converted_constant(thd, b, &b_cache, type); return set_compare_func(owner_arg, type); } int Arg_comparator::set_cmp_func(Item_result_field *owner_arg, Item **a1, Item **a2, bool set_null_arg) { set_null= set_null_arg; const Item_result item_result= item_cmp_type((*a1)->result_type(), (*a2)->result_type()); return set_cmp_func(owner_arg, a1, a2, item_result); } /* Helper function to call from Arg_comparator::set_cmp_func() */ bool Arg_comparator::try_year_cmp_func(Item_result type) { if (type == ROW_RESULT) return FALSE; bool a_is_year= (*a)->field_type() == MYSQL_TYPE_YEAR; bool b_is_year= (*b)->field_type() == MYSQL_TYPE_YEAR; if (!a_is_year && !b_is_year) return FALSE; if (a_is_year && b_is_year) { get_value_a_func= &get_year_value; get_value_b_func= &get_year_value; } else if (a_is_year && (*b)->is_temporal_with_date()) { get_value_a_func= &get_year_value; get_value_b_func= &get_datetime_value; } else if (b_is_year && (*a)->is_temporal_with_date()) { get_value_b_func= &get_year_value; get_value_a_func= &get_datetime_value; } else return FALSE; is_nulls_eq= is_owner_equal_func(); func= &Arg_comparator::compare_datetime; set_cmp_context_for_datetime(); return TRUE; } /** Convert and cache a constant. @param value [in] An item to cache @param cache_item [out] Placeholder for the cache item @param type [in] Comparison type @details When given item is a constant and its type differs from comparison type then cache its value to avoid type conversion of this constant on each evaluation. In this case the value is cached and the reference to the cache is returned. Original value is returned otherwise. @return cache item or original value. */ Item** Arg_comparator::cache_converted_constant(THD *thd_arg, Item **value, Item **cache_item, Item_result type) { /* Don't need cache if doing context analysis only. */ if (!thd_arg->lex->is_ps_or_view_context_analysis() && (*value)->const_item() && type != (*value)->result_type()) { Item_cache *cache= Item_cache::get_cache(*value, type); cache->setup(*value); *cache_item= cache; return cache_item; } return value; } void Arg_comparator::set_datetime_cmp_func(Item_result_field *owner_arg, Item **a1, Item **b1) { owner= owner_arg; a= a1; b= b1; a_cache= 0; b_cache= 0; is_nulls_eq= FALSE; func= &Arg_comparator::compare_datetime; get_value_a_func= &get_datetime_value; get_value_b_func= &get_datetime_value; set_cmp_context_for_datetime(); } /* Retrieves correct DATETIME value from given item. SYNOPSIS get_datetime_value() thd thread handle item_arg [in/out] item to retrieve DATETIME value from cache_arg [in/out] pointer to place to store the caching item to warn_item [in] item for issuing the conversion warning is_null [out] TRUE <=> the item_arg is null DESCRIPTION Retrieves the correct DATETIME value from given item for comparison by the compare_datetime() function. If item's result can be compared as longlong then its int value is used and its string value is used otherwise. Strings are always parsed and converted to int values by the get_date_from_str() function. This allows us to compare correctly string dates with missed insignificant zeros. If an item is a constant one then its value is cached and it isn't get parsed again. An Item_cache_int object is used for caching values. It seamlessly substitutes the original item. The cache item is marked as non-constant to prevent re-caching it again. In order to compare correctly DATE and DATETIME items the result of the former are treated as a DATETIME with zero time (00:00:00). RETURN obtained value */ longlong get_datetime_value(THD *thd, Item ***item_arg, Item **cache_arg, const Item *warn_item, bool *is_null) { longlong value= 0; String buf, *str= 0; Item *item= **item_arg; if (item->is_temporal()) { value= item->val_date_temporal(); *is_null= item->null_value; } else { str= item->val_str(&buf); *is_null= item->null_value; } if (*is_null) return ~(ulonglong) 0; /* Convert strings to the integer DATE/DATETIME representation. Even if both dates provided in strings we can't compare them directly as strings as there is no warranty that they are correct and do not miss some insignificant zeros. */ if (str) { bool error; enum_field_types f_type= warn_item->field_type(); timestamp_type t_type= f_type == MYSQL_TYPE_DATE ? MYSQL_TIMESTAMP_DATE : MYSQL_TIMESTAMP_DATETIME; value= (longlong) get_date_from_str(thd, str, t_type, warn_item->item_name.ptr(), &error); /* If str did not contain a valid date according to the current SQL_MODE, get_date_from_str() has already thrown a warning, and we don't want to throw NULL on invalid date (see 5.2.6 "SQL modes" in the manual), so we're done here. */ } /* Do not cache GET_USER_VAR() function as its const_item() may return TRUE for the current thread but it still may change during the execution. */ if (item->const_item() && cache_arg && item->type() != Item::CACHE_ITEM && (item->type() != Item::FUNC_ITEM || ((Item_func*)item)->functype() != Item_func::GUSERVAR_FUNC)) { Item_cache_datetime *cache= new Item_cache_datetime(MYSQL_TYPE_DATETIME); /* Mark the cache as non-const to prevent re-caching. */ cache->set_used_tables(1); cache->store(item, value); *cache_arg= cache; *item_arg= cache_arg; } return value; } /* Retrieves YEAR value of 19XX-00-00 00:00:00 form from given item. SYNOPSIS get_year_value() thd thread handle item_arg [in/out] item to retrieve YEAR value from cache_arg [in/out] pointer to place to store the caching item to warn_item [in] item for issuing the conversion warning is_null [out] TRUE <=> the item_arg is null DESCRIPTION Retrieves the YEAR value of 19XX form from given item for comparison by the compare_datetime() function. Converts year to DATETIME of form YYYY-00-00 00:00:00 for the compatibility with the get_datetime_value function result. RETURN obtained value */ static longlong get_year_value(THD *thd, Item ***item_arg, Item **cache_arg, const Item *warn_item, bool *is_null) { longlong value= 0; Item *item= **item_arg; value= item->val_int(); *is_null= item->null_value; if (*is_null) return ~(ulonglong) 0; /* Convert year to DATETIME packed format */ return year_to_longlong_datetime_packed(static_cast<long>(value)); } /* Compare items values as dates. SYNOPSIS Arg_comparator::compare_datetime() DESCRIPTION Compare items values as DATE/DATETIME for both EQUAL_FUNC and from other comparison functions. The correct DATETIME values are obtained with help of the get_datetime_value() function. RETURN If is_nulls_eq is TRUE: 1 if items are equal or both are null 0 otherwise If is_nulls_eq is FALSE: -1 a < b or at least one item is null 0 a == b 1 a > b See the table: is_nulls_eq | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | a_is_null | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | b_is_null | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | result | 1 | 0 | 0 |0/1|-1 |-1 |-1 |-1/0/1| */ int Arg_comparator::compare_datetime() { bool a_is_null, b_is_null; longlong a_value, b_value; THD *thd= current_thd; /* Get DATE/DATETIME/TIME value of the 'a' item. */ a_value= (*get_value_a_func)(thd, &a, &a_cache, *b, &a_is_null); if (!is_nulls_eq && a_is_null) { if (set_null) owner->null_value= 1; return -1; } /* Get DATE/DATETIME/TIME value of the 'b' item. */ b_value= (*get_value_b_func)(thd, &b, &b_cache, *a, &b_is_null); if (a_is_null || b_is_null) { if (set_null) owner->null_value= is_nulls_eq ? 0 : 1; return is_nulls_eq ? (a_is_null == b_is_null) : -1; } /* Here we have two not-NULL values. */ if (set_null) owner->null_value= 0; /* Compare values. */ if (is_nulls_eq) return (a_value == b_value); return a_value < b_value ? -1 : (a_value > b_value ? 1 : 0); } /** Get one of the arguments to the comparator as a JSON value. @param[in] arg pointer to the argument @param[in,out] value buffer used for reading the JSON value @param[in,out] tmp buffer used for converting string values to the correct charset, if necessary @param[out] result where to store the result @param[in,out] scalar pointer to a location with pre-allocated memory used for JSON scalars that are converted from SQL scalars @retval false on success @retval true on failure */ static bool get_json_arg(Item* arg, String *value, String *tmp, Json_wrapper *result, Json_scalar_holder **scalar) { Json_scalar_holder *holder= NULL; /* If the argument is a non-JSON type, it gets converted to a JSON scalar. Use the pre-allocated memory passed in via the "scalar" argument. Note, however, that geometry types are not converted to scalars. They are converted to JSON objects by get_json_atom_wrapper(). */ if ((arg->field_type() != MYSQL_TYPE_JSON) && (arg->field_type() != MYSQL_TYPE_GEOMETRY)) { /* If it's a constant item, and we've already read it, just return the value that's cached in the pre-allocated memory. */ if (*scalar && arg->const_item()) { Json_wrapper tmp(get_json_scalar_from_holder(*scalar)); tmp.set_alias(); result->steal(&tmp); return false; } /* Allocate memory to hold the scalar, if we haven't already done so. Otherwise, we reuse the previously allocated memory. */ if (!*scalar) *scalar= create_json_scalar_holder(); holder= *scalar; } return get_json_atom_wrapper(&arg, 0, "<=", value, tmp, result, holder, true); } /** Compare two Item objects as JSON. If one of the arguments is NULL, and the owner is not EQUAL_FUNC, the null_value flag of the owner will be set to true. @return If is_nulls_eq is true, return 1 if both items are not NULL and they are equal, or if both items are NULL; otherwise, return 0. If is_nulls_eq is false, return -1 if at least one of the items is NULL or if the first item is less than the second item, return 0 if the two items are equal, return 1 if the first item is greater than the second item. */ int Arg_comparator::compare_json() { char buf[STRING_BUFFER_USUAL_SIZE]; String tmp(buf, sizeof(buf), &my_charset_bin); // Get the JSON value in the a Item. Json_wrapper aw; if (get_json_arg(*a, &value1, &tmp, &aw, &json_scalar)) return 1; bool a_is_null= (*a)->null_value; if (a_is_null) { if (!is_nulls_eq) { if (set_null) owner->null_value= true; return -1; } } // Get the JSON value in the b Item. Json_wrapper bw; if (get_json_arg(*b, &value1, &tmp, &bw, &json_scalar)) return 1; bool b_is_null= (*b)->null_value; if (b_is_null) { if (!is_nulls_eq) { if (set_null) owner->null_value= true; return -1; } } if (set_null) owner->null_value= false; /* If we were called by the <=> operator, we should return 0/1 instead of -1/0/1. 0 means not equal, 1 means equal. The <=> operator considers two NULLs equal. */ if (is_nulls_eq) { if (a_is_null || b_is_null) return a_is_null == b_is_null; else return aw.compare(bw) == 0; } // Otherwise, return -1/0/1. return aw.compare(bw); } int Arg_comparator::compare_string() { String *res1,*res2; if ((res1= (*a)->val_str(&value1))) { if ((res2= (*b)->val_str(&value2))) { if (set_null) owner->null_value= 0; return sortcmp(res1,res2,cmp_collation.collation); } } if (set_null) owner->null_value= 1; return -1; } /** Compare strings byte by byte. End spaces are also compared. @retval <0 *a < *b @retval 0 *b == *b @retval >0 *a > *b */ int Arg_comparator::compare_binary_string() { String *res1,*res2; if ((res1= (*a)->val_str(&value1))) { if ((res2= (*b)->val_str(&value2))) { if (set_null) owner->null_value= 0; size_t res1_length= res1->length(); size_t res2_length= res2->length(); int cmp= memcmp(res1->ptr(), res2->ptr(), min(res1_length,res2_length)); return cmp ? cmp : (int) (res1_length - res2_length); } } if (set_null) owner->null_value= 1; return -1; } /** Compare strings, but take into account that NULL == NULL. */ int Arg_comparator::compare_e_string() { String *res1,*res2; res1= (*a)->val_str(&value1); res2= (*b)->val_str(&value2); if (!res1 || !res2) return MY_TEST(res1 == res2); return MY_TEST(sortcmp(res1, res2, cmp_collation.collation) == 0); } int Arg_comparator::compare_e_binary_string() { String *res1,*res2; res1= (*a)->val_str(&value1); res2= (*b)->val_str(&value2); if (!res1 || !res2) return MY_TEST(res1 == res2); return MY_TEST(stringcmp(res1, res2) == 0); } int Arg_comparator::compare_real() { /* Fix yet another manifestation of Bug#2338. 'Volatile' will instruct gcc to flush double values out of 80-bit Intel FPU registers before performing the comparison. */ volatile double val1, val2; val1= (*a)->val_real(); if (!(*a)->null_value) { val2= (*b)->val_real(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; if (val1 < val2) return -1; if (val1 == val2) return 0; return 1; } } if (set_null) owner->null_value= 1; return -1; } int Arg_comparator::compare_decimal() { my_decimal decimal1; my_decimal *val1= (*a)->val_decimal(&decimal1); if (!(*a)->null_value) { my_decimal decimal2; my_decimal *val2= (*b)->val_decimal(&decimal2); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; return my_decimal_cmp(val1, val2); } } if (set_null) owner->null_value= 1; return -1; } int Arg_comparator::compare_e_real() { double val1= (*a)->val_real(); double val2= (*b)->val_real(); if ((*a)->null_value || (*b)->null_value) return MY_TEST((*a)->null_value && (*b)->null_value); return MY_TEST(val1 == val2); } int Arg_comparator::compare_e_decimal() { my_decimal decimal1, decimal2; my_decimal *val1= (*a)->val_decimal(&decimal1); my_decimal *val2= (*b)->val_decimal(&decimal2); if ((*a)->null_value || (*b)->null_value) return MY_TEST((*a)->null_value && (*b)->null_value); return MY_TEST(my_decimal_cmp(val1, val2) == 0); } int Arg_comparator::compare_real_fixed() { /* Fix yet another manifestation of Bug#2338. 'Volatile' will instruct gcc to flush double values out of 80-bit Intel FPU registers before performing the comparison. */ volatile double val1, val2; val1= (*a)->val_real(); if (!(*a)->null_value) { val2= (*b)->val_real(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; if (val1 == val2 || fabs(val1 - val2) < precision) return 0; if (val1 < val2) return -1; return 1; } } if (set_null) owner->null_value= 1; return -1; } int Arg_comparator::compare_e_real_fixed() { double val1= (*a)->val_real(); double val2= (*b)->val_real(); if ((*a)->null_value || (*b)->null_value) return MY_TEST((*a)->null_value && (*b)->null_value); return MY_TEST(val1 == val2 || fabs(val1 - val2) < precision); } int Arg_comparator::compare_int_signed() { longlong val1= (*a)->val_int(); if (!(*a)->null_value) { longlong val2= (*b)->val_int(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; if (val1 < val2) return -1; if (val1 == val2) return 0; return 1; } } if (set_null) owner->null_value= 1; return -1; } /** Compare arguments using numeric packed temporal representation. */ int Arg_comparator::compare_time_packed() { /* Note, we cannot do this: assert((*a)->field_type() == MYSQL_TYPE_TIME); assert((*b)->field_type() == MYSQL_TYPE_TIME); SELECT col_time_key FROM t1 WHERE col_time_key != UTC_DATE() AND col_time_key = MAKEDATE(43, -2852); is rewritten to: SELECT col_time_key FROM t1 WHERE MAKEDATE(43, -2852) != UTC_DATE() AND col_time_key = MAKEDATE(43, -2852); */ longlong val1= (*a)->val_time_temporal(); if (!(*a)->null_value) { longlong val2= (*b)->val_time_temporal(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; return val1 < val2 ? -1 : val1 > val2 ? 1 : 0; } } if (set_null) owner->null_value= 1; return -1; } /** Compare arguments using numeric packed representation for '<=>'. */ int Arg_comparator::compare_e_time_packed() { longlong val1= (*a)->val_time_temporal(); longlong val2= (*b)->val_time_temporal(); if ((*a)->null_value || (*b)->null_value) return MY_TEST((*a)->null_value && (*b)->null_value); return MY_TEST(val1 == val2); } /** Compare values as BIGINT UNSIGNED. */ int Arg_comparator::compare_int_unsigned() { ulonglong val1= (*a)->val_int(); if (!(*a)->null_value) { ulonglong val2= (*b)->val_int(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; if (val1 < val2) return -1; if (val1 == val2) return 0; return 1; } } if (set_null) owner->null_value= 1; return -1; } /** Compare signed (*a) with unsigned (*B) */ int Arg_comparator::compare_int_signed_unsigned() { longlong sval1= (*a)->val_int(); if (!(*a)->null_value) { ulonglong uval2= (ulonglong)(*b)->val_int(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; if (sval1 < 0 || (ulonglong)sval1 < uval2) return -1; if ((ulonglong)sval1 == uval2) return 0; return 1; } } if (set_null) owner->null_value= 1; return -1; } /** Compare unsigned (*a) with signed (*B) */ int Arg_comparator::compare_int_unsigned_signed() { ulonglong uval1= (ulonglong)(*a)->val_int(); if (!(*a)->null_value) { longlong sval2= (*b)->val_int(); if (!(*b)->null_value) { if (set_null) owner->null_value= 0; if (sval2 < 0) return 1; if (uval1 < (ulonglong)sval2) return -1; if (uval1 == (ulonglong)sval2) return 0; return 1; } } if (set_null) owner->null_value= 1; return -1; } int Arg_comparator::compare_e_int() { longlong val1= (*a)->val_int(); longlong val2= (*b)->val_int(); if ((*a)->null_value || (*b)->null_value) return MY_TEST((*a)->null_value && (*b)->null_value); return MY_TEST(val1 == val2); } /** Compare unsigned *a with signed *b or signed *a with unsigned *b. */ int Arg_comparator::compare_e_int_diff_signedness() { longlong val1= (*a)->val_int(); longlong val2= (*b)->val_int(); if ((*a)->null_value || (*b)->null_value) return MY_TEST((*a)->null_value && (*b)->null_value); return (val1 >= 0) && MY_TEST(val1 == val2); } int Arg_comparator::compare_row() { int res= 0; bool was_null= 0; (*a)->bring_value(); (*b)->bring_value(); if ((*a)->null_value || (*b)->null_value) { owner->null_value= 1; return -1; } uint n= (*a)->cols(); for (uint i= 0; i<n; i++) { res= comparators[i].compare(); /* Aggregate functions don't need special null handling. */ if (owner->null_value && owner->type() == Item::FUNC_ITEM) { // NULL was compared switch (((Item_func*)owner)->functype()) { case Item_func::NE_FUNC: break; // NE never aborts on NULL even if abort_on_null is set case Item_func::LT_FUNC: case Item_func::LE_FUNC: case Item_func::GT_FUNC: case Item_func::GE_FUNC: return -1; // <, <=, > and >= always fail on NULL default: // EQ_FUNC if (((Item_bool_func2*)owner)->abort_on_null) return -1; // We do not need correct NULL returning } was_null= 1; owner->null_value= 0; res= 0; // continue comparison (maybe we will meet explicit difference) } else if (res) return res; } if (was_null) { /* There was NULL(s) in comparison in some parts, but there was no explicit difference in other parts, so we have to return NULL. */ owner->null_value= 1; return -1; } return 0; } int Arg_comparator::compare_e_row() { (*a)->bring_value(); (*b)->bring_value(); uint n= (*a)->cols(); for (uint i= 0; i<n; i++) { if (!comparators[i].compare()) return 0; } return 1; } void Item_func_truth::fix_length_and_dec() { maybe_null= 0; null_value= 0; decimals= 0; max_length= 1; } void Item_func_truth::print(String *str, enum_query_type query_type) { str->append('('); args[0]->print(str, query_type); str->append(STRING_WITH_LEN(" is ")); if (! affirmative) str->append(STRING_WITH_LEN("not ")); if (value) str->append(STRING_WITH_LEN("true")); else str->append(STRING_WITH_LEN("false")); str->append(')'); } bool Item_func_truth::val_bool() { bool val= args[0]->val_bool(); if (args[0]->null_value) { /* NULL val IS {TRUE, FALSE} --> FALSE NULL val IS NOT {TRUE, FALSE} --> TRUE */ return (! affirmative); } if (affirmative) { /* {TRUE, FALSE} val IS {TRUE, FALSE} value */ return (val == value); } /* {TRUE, FALSE} val IS NOT {TRUE, FALSE} value */ return (val != value); } longlong Item_func_truth::val_int() { return (val_bool() ? 1 : 0); } bool Item_in_optimizer::fix_left(THD *thd, Item **ref) { /* Refresh this pointer as left_expr may have been substituted during resolving. */ args[0]= ((Item_in_subselect *)args[1])->left_expr; if ((!args[0]->fixed && args[0]->fix_fields(thd, args)) || (!cache && !(cache= Item_cache::get_cache(args[0])))) return 1; cache->setup(args[0]); used_tables_cache= args[0]->used_tables(); if (cache->cols() == 1) { cache->set_used_tables(used_tables_cache); } else { uint n= cache->cols(); for (uint i= 0; i < n; i++) { ((Item_cache *)cache->element_index(i))-> set_used_tables(args[0]->element_index(i)->used_tables()); } } not_null_tables_cache= args[0]->not_null_tables(); with_sum_func= args[0]->with_sum_func; if ((const_item_cache= args[0]->const_item())) cache->store(args[0]); return 0; } bool Item_in_optimizer::fix_fields(THD *thd, Item **ref) { assert(fixed == 0); if (fix_left(thd, ref)) return TRUE; if (args[0]->maybe_null) maybe_null=1; if (!args[1]->fixed && args[1]->fix_fields(thd, args+1)) return TRUE; Item_in_subselect * sub= (Item_in_subselect *)args[1]; if (args[0]->cols() != sub->engine->cols()) { my_error(ER_OPERAND_COLUMNS, MYF(0), args[0]->cols()); return TRUE; } if (args[1]->maybe_null) maybe_null=1; with_sum_func= with_sum_func || args[1]->with_sum_func; used_tables_cache|= args[1]->used_tables(); not_null_tables_cache|= args[1]->not_null_tables(); if (!sub->is_top_level_item()) { /* This is a NOT IN subquery predicate (or equivalent). Null values passed from outer tables and used in the left-hand expression of the predicate must be considered in the evaluation, hence filter out these tables from the set of null-rejecting tables. */ not_null_tables_cache&= ~args[0]->not_null_tables(); } const_item_cache&= args[1]->const_item(); fixed= 1; return FALSE; } void Item_in_optimizer::fix_after_pullout(st_select_lex *parent_select, st_select_lex *removed_select) { used_tables_cache= get_initial_pseudo_tables(); not_null_tables_cache= 0; const_item_cache= 1; /* No need to call fix_after_pullout() on args[0] (ie left expression), as Item_in_subselect::fix_after_pullout() will do this. So, just forward the call to the Item_in_subselect object. */ args[1]->fix_after_pullout(parent_select, removed_select); used_tables_cache|= args[1]->used_tables(); not_null_tables_cache|= args[1]->not_null_tables(); const_item_cache&= args[1]->const_item(); } /** The implementation of optimized \<outer expression\> [NOT] IN \<subquery\> predicates. It applies to predicates which have gone through the IN->EXISTS transformation in in_to_exists_transformer functions; not to subquery materialization (which has no triggered conditions). The implementation works as follows. For the current value of the outer expression - If it contains only NULL values, the original (before rewrite by the Item_in_subselect rewrite methods) inner subquery is non-correlated and was previously executed, there is no need to re-execute it, and the previous return value is returned. - If it contains NULL values, check if there is a partial match for the inner query block by evaluating it. For clarity we repeat here the transformation previously performed on the sub-query. The expression <tt> ( oc_1, ..., oc_n ) \<in predicate\> ( SELECT ic_1, ..., ic_n FROM \<table\> WHERE \<inner where\> ) </tt> was transformed into <tt> ( oc_1, ..., oc_n ) \<in predicate\> ( SELECT ic_1, ..., ic_n FROM \<table\> WHERE \<inner where\> AND ... ( ic_k = oc_k OR ic_k IS NULL ) HAVING ... NOT ic_k IS NULL ) </tt> The evaluation will now proceed according to special rules set up elsewhere. These rules include: - The HAVING NOT \<inner column\> IS NULL conditions added by the aforementioned rewrite methods will detect whether they evaluated (and rejected) a NULL value and if so, will cause the subquery to evaluate to NULL. - The added WHERE and HAVING conditions are present only for those inner columns that correspond to outer column that are not NULL at the moment. - If there is an eligible index for executing the subquery, the special access method "Full scan on NULL key" is employed which ensures that the inner query will detect if there are NULL values resulting from the inner query. This access method will quietly resort to table scan if it needs to find NULL values as well. - Under these conditions, the sub-query need only be evaluated in order to find out whether it produced any rows. - If it did, we know that there was a partial match since there are NULL values in the outer row expression. - If it did not, the result is FALSE or UNKNOWN. If at least one of the HAVING sub-predicates rejected a NULL value corresponding to an outer non-NULL, and hence the inner query block returns UNKNOWN upon evaluation, there was a partial match and the result is UNKNOWN. - If it contains no NULL values, the call is forwarded to the inner query block. @see Item_in_subselect::val_bool() @see Item_is_not_null_test::val_int() */ longlong Item_in_optimizer::val_int() { bool tmp; assert(fixed == 1); cache->store(args[0]); cache->cache_value(); if (cache->null_value) { Item_in_subselect * const item_subs= static_cast<Item_in_subselect *>(args[1]); /* We're evaluating "<outer_value_list> [NOT] IN (SELECT <inner_value_list>...)" where one or more of the outer values is NULL. */ if (item_subs->is_top_level_item()) { /* We're evaluating a top level item, e.g. "<outer_value_list> IN (SELECT <inner_value_list>...)", and in this case a NULL value in the outer_value_list means that the result shall be NULL/FALSE (makes no difference for top level items). The cached value is NULL, so just return NULL. */ null_value= 1; } else { /* We're evaluating an item where a NULL value in either the outer or inner value list does not automatically mean that we can return NULL/FALSE. An example of such a query is "<outer_value_list> NOT IN (SELECT <inner_value_list>...)" The result when there is at least one NULL value is: NULL if the SELECT evaluated over the non-NULL values produces at least one row, FALSE otherwise */ bool all_left_cols_null= true; const uint ncols= cache->cols(); /* Turn off the predicates that are based on column compares for which the left part is currently NULL */ for (uint i= 0; i < ncols; i++) { if (cache->element_index(i)->null_value) item_subs->set_cond_guard_var(i, FALSE); else all_left_cols_null= false; } if (all_left_cols_null && result_for_null_param != UNKNOWN && !item_subs->dependent_before_in2exists()) { /* This subquery was originally not correlated. The IN->EXISTS transformation may have made it correlated, but only to the left expression. All values in the left expression are NULL, and we have already evaluated the subquery for all NULL values: return the same result we did last time without evaluating the subquery. */ null_value= result_for_null_param; } else { /* The subquery has to be evaluated */ (void) item_subs->val_bool_result(); if (!item_subs->value) null_value= item_subs->null_value; else null_value= TRUE; if (all_left_cols_null) result_for_null_param= null_value; } /* Turn all predicates back on */ for (uint i= 0; i < ncols; i++) item_subs->set_cond_guard_var(i, TRUE); } return 0; } tmp= args[1]->val_bool_result(); null_value= args[1]->null_value; return tmp; } void Item_in_optimizer::keep_top_level_cache() { cache->keep_array(); save_cache= 1; } void Item_in_optimizer::cleanup() { DBUG_ENTER("Item_in_optimizer::cleanup"); Item_bool_func::cleanup(); if (!save_cache) cache= 0; DBUG_VOID_RETURN; } bool Item_in_optimizer::is_null() { val_int(); return null_value; } /** Transform an Item_in_optimizer and its arguments with a callback function. @param transformer the transformer callback function to be applied to the nodes of the tree of the object @param parameter to be passed to the transformer @detail Recursively transform the left and the right operand of this Item. The Right operand is an Item_in_subselect or its subclass. To avoid the creation of new Items, we use the fact the the left operand of the Item_in_subselect is the same as the one of 'this', so instead of transforming its operand, we just assign the left operand of the Item_in_subselect to be equal to the left operand of 'this'. The transformation is not applied further to the subquery operand if the IN predicate. @returns @retval pointer to the transformed item @retval NULL if an error occurred */ Item *Item_in_optimizer::transform(Item_transformer transformer, uchar *argument) { Item *new_item; assert(!current_thd->stmt_arena->is_stmt_prepare()); assert(arg_count == 2); /* Transform the left IN operand. */ new_item= args[0]->transform(transformer, argument); if (!new_item) return 0; /* THD::change_item_tree() should be called only if the tree was really transformed, i.e. when a new item has been created. Otherwise we'll be allocating a lot of unnecessary memory for change records at each execution. */ if (args[0] != new_item) current_thd->change_item_tree(args, new_item); /* Transform the right IN operand which should be an Item_in_subselect or a subclass of it. The left operand of the IN must be the same as the left operand of this Item_in_optimizer, so in this case there is no further transformation, we only make both operands the same. TODO: is it the way it should be? */ assert((args[1])->type() == Item::SUBSELECT_ITEM && (((Item_subselect*)(args[1]))->substype() == Item_subselect::IN_SUBS || ((Item_subselect*)(args[1]))->substype() == Item_subselect::ALL_SUBS || ((Item_subselect*)(args[1]))->substype() == Item_subselect::ANY_SUBS)); Item_in_subselect *in_arg= (Item_in_subselect*)args[1]; if (in_arg->left_expr != args[0]) current_thd->change_item_tree(&in_arg->left_expr, args[0]); return (this->*transformer)(argument); } void Item_in_optimizer::replace_argument(THD *thd, Item **oldpp, Item *newp) { // Maintain the invariant described in this class's comment Item_in_subselect *ss= down_cast<Item_in_subselect *>(args[1]); thd->change_item_tree(&ss->left_expr, newp); /* fix_left() does cache setup. This setup() does (mainly) cache->example=arg[0]; we could wonder why change_item_tree isn't used instead of this simple assignment. The reason is that cache->setup() is called at every fix_fields(), so every execution, so it's not important if the previous execution left a non-rolled-back now-pointing-to-garbage cache->example - it will be overwritten. */ fix_left(thd, NULL); } longlong Item_func_eq::val_int() { assert(fixed == 1); int value= cmp.compare(); return value == 0 ? 1 : 0; } /** Same as Item_func_eq, but NULL = NULL. */ void Item_func_equal::fix_length_and_dec() { Item_bool_func2::fix_length_and_dec(); maybe_null=null_value=0; } longlong Item_func_equal::val_int() { assert(fixed == 1); return cmp.compare(); } float Item_func_ne::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return 1.0f - fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); } longlong Item_func_ne::val_int() { assert(fixed == 1); int value= cmp.compare(); return value != 0 && !null_value ? 1 : 0; } float Item_func_equal::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); } float Item_func_ge::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_INEQUALITY); } float Item_func_lt::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_INEQUALITY); } float Item_func_le::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_INEQUALITY); } float Item_func_gt::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_INEQUALITY); } longlong Item_func_ge::val_int() { assert(fixed == 1); int value= cmp.compare(); return value >= 0 ? 1 : 0; } longlong Item_func_gt::val_int() { assert(fixed == 1); int value= cmp.compare(); return value > 0 ? 1 : 0; } longlong Item_func_le::val_int() { assert(fixed == 1); int value= cmp.compare(); return value <= 0 && !null_value ? 1 : 0; } longlong Item_func_lt::val_int() { assert(fixed == 1); int value= cmp.compare(); return value < 0 && !null_value ? 1 : 0; } longlong Item_func_strcmp::val_int() { assert(fixed == 1); String *a=args[0]->val_str(&cmp.value1); String *b=args[1]->val_str(&cmp.value2); if (!a || !b) { null_value=1; return 0; } int value= sortcmp(a,b,cmp.cmp_collation.collation); null_value=0; return !value ? 0 : (value < 0 ? (longlong) -1 : (longlong) 1); } bool Item_func_opt_neg::eq(const Item *item, bool binary_cmp) const { /* Assume we don't have rtti */ if (this == item) return 1; if (item->type() != FUNC_ITEM) return 0; Item_func *item_func=(Item_func*) item; if (arg_count != item_func->arg_count || functype() != item_func->functype()) return 0; if (negated != ((Item_func_opt_neg *) item_func)->negated) return 0; for (uint i=0; i < arg_count ; i++) if (!args[i]->eq(item_func->arguments()[i], binary_cmp)) return 0; return 1; } bool Item_func_interval::itemize(Parse_context *pc, Item **res) { if (skip_itemize(res)) return false; if (row == NULL || // OOM in constructor super::itemize(pc, res)) return true; assert(row == args[0]); // row->itemize() is not needed return false; } Item_row *Item_func_interval::alloc_row(const POS &pos, MEM_ROOT *mem_root, Item *expr1, Item *expr2, PT_item_list *opt_expr_list) { List<Item> *list= opt_expr_list ? &opt_expr_list->value : new (mem_root) List<Item>; if (list == NULL) return NULL; list->push_front(expr2); row= new (mem_root) Item_row(pos, expr1, *list); return row; } void Item_func_interval::fix_length_and_dec() { uint rows= row->cols(); //The number of columns in one argument is limited to one for (uint i= 0; i < rows; i++) { if (row->element_index(i)->check_cols(1)) return; } use_decimal_comparison= ((row->element_index(0)->result_type() == DECIMAL_RESULT) || (row->element_index(0)->result_type() == INT_RESULT)); if (rows > 8) { bool not_null_consts= TRUE; for (uint i= 1; not_null_consts && i < rows; i++) { Item *el= row->element_index(i); not_null_consts= el->const_item() && !el->is_null(); } if (not_null_consts && (intervals= (interval_range*) sql_alloc(sizeof(interval_range) * (rows - 1)))) { if (use_decimal_comparison) { for (uint i= 1; i < rows; i++) { Item *el= row->element_index(i); interval_range *range= intervals + (i-1); if ((el->result_type() == DECIMAL_RESULT) || (el->result_type() == INT_RESULT)) { range->type= DECIMAL_RESULT; range->dec.init(); my_decimal *dec= el->val_decimal(&range->dec); if (dec != &range->dec) { range->dec= *dec; } } else { range->type= REAL_RESULT; range->dbl= el->val_real(); } } } else { for (uint i= 1; i < rows; i++) { intervals[i-1].dbl= row->element_index(i)->val_real(); } } } } maybe_null= 0; max_length= 2; used_tables_cache|= row->used_tables(); not_null_tables_cache= row->not_null_tables(); with_sum_func= with_sum_func || row->with_sum_func; const_item_cache&= row->const_item(); } /** Appends function name and arguments list to the String str. @note Arguments of INTERVAL function are stored in "Item_row" object. Function print_args calls print function of "Item_row" class. Item_row::print function append "(", "argument_list" and ")" to String str. @param str [in/out] String to which the func_name and argument list should be appeneded. @param query_type [in] Query type */ void Item_func_interval::print(String *str, enum_query_type query_type) { str->append(func_name()); print_args(str, 0, query_type); } /** Execute Item_func_interval(). @note If we are doing a decimal comparison, we are evaluating the first item twice. @return - -1 if null value, - 0 if lower than lowest - 1 - arg_count-1 if between args[n] and args[n+1] - arg_count if higher than biggest argument */ longlong Item_func_interval::val_int() { assert(fixed == 1); double value; my_decimal dec_buf, *dec= NULL; uint i; if (use_decimal_comparison) { dec= row->element_index(0)->val_decimal(&dec_buf); if (row->element_index(0)->null_value) return -1; my_decimal2double(E_DEC_FATAL_ERROR, dec, &value); } else { value= row->element_index(0)->val_real(); if (row->element_index(0)->null_value) return -1; } if (intervals) { // Use binary search to find interval uint start,end; start= 0; end= row->cols()-2; while (start != end) { uint mid= (start + end + 1) / 2; interval_range *range= intervals + mid; my_bool cmp_result; /* The values in the range intervall may have different types, Only do a decimal comparision of the first argument is a decimal and we are comparing against a decimal */ if (dec && range->type == DECIMAL_RESULT) cmp_result= my_decimal_cmp(&range->dec, dec) <= 0; else cmp_result= (range->dbl <= value); if (cmp_result) start= mid; else end= mid - 1; } interval_range *range= intervals+start; return ((dec && range->type == DECIMAL_RESULT) ? my_decimal_cmp(dec, &range->dec) < 0 : value < range->dbl) ? 0 : start + 1; } for (i=1 ; i < row->cols() ; i++) { Item *el= row->element_index(i); if (use_decimal_comparison && ((el->result_type() == DECIMAL_RESULT) || (el->result_type() == INT_RESULT))) { my_decimal e_dec_buf, *e_dec= el->val_decimal(&e_dec_buf); /* Skip NULL ranges. */ if (el->null_value) continue; if (my_decimal_cmp(e_dec, dec) > 0) return i - 1; } else { double val= el->val_real(); /* Skip NULL ranges. */ if (el->null_value) continue; if (val > value) return i - 1; } } return i-1; } /** Perform context analysis of a BETWEEN item tree. This function performs context analysis (name resolution) and calculates various attributes of the item tree with Item_func_between as its root. The function saves in ref the pointer to the item or to a newly created item that is considered as a replacement for the original one. @param thd reference to the global context of the query thread @param ref pointer to Item* variable where pointer to resulting "fixed" item is to be assigned @note Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on a predicate/function level. Then it's easy to show that: @verbatim T0(e BETWEEN e1 AND e2) = union(T1(e),T1(e1),T1(e2)) T1(e BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2))) T0(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2))) T1(e NOT BETWEEN e1 AND e2) = union(T1(e),intersection(T1(e1),T1(e2))) @endverbatim @retval 0 ok @retval 1 got error */ bool Item_func_between::fix_fields(THD *thd, Item **ref) { if (Item_func_opt_neg::fix_fields(thd, ref)) return 1; thd->lex->current_select()->between_count++; // not_null_tables_cache == union(T1(e),T1(e1),T1(e2)) if (pred_level && !negated) return 0; // not_null_tables_cache == union(T1(e), intersection(T1(e1),T1(e2))) not_null_tables_cache= (args[0]->not_null_tables() | (args[1]->not_null_tables() & args[2]->not_null_tables())); return 0; } void Item_func_between::fix_after_pullout(st_select_lex *parent_select, st_select_lex *removed_select) { Item_func_opt_neg::fix_after_pullout(parent_select, removed_select); // not_null_tables_cache == union(T1(e),T1(e1),T1(e2)) if (pred_level && !negated) return; // not_null_tables_cache == union(T1(e), intersection(T1(e1),T1(e2))) not_null_tables_cache= args[0]->not_null_tables() | (args[1]->not_null_tables() & args[2]->not_null_tables()); } void Item_func_between::fix_length_and_dec() { max_length= 1; int i; int datetime_items_found= 0; int time_items_found= 0; compare_as_dates_with_strings= false; compare_as_temporal_times= compare_as_temporal_dates= false; THD *thd= current_thd; /* As some compare functions are generated after sql_yacc, we have to check for out of memory conditions here */ if (!args[0] || !args[1] || !args[2]) return; if ( agg_cmp_type(&cmp_type, args, 3)) return; if (cmp_type == STRING_RESULT && agg_arg_charsets_for_comparison(cmp_collation, args, 3)) return; /* See comments for the code block doing similar checks in Item_bool_func2::fix_length_and_dec(). */ reject_geometry_args(arg_count, args, this); /* JSON values will be compared as strings, and not with the JSON comparator as one might expect. Raise a warning if one of the arguments is JSON. */ unsupported_json_comparison(arg_count, args, "comparison of JSON in the BETWEEN operator"); /* Detect the comparison of DATE/DATETIME items. At least one of items should be a DATE/DATETIME item and other items should return the STRING result. */ if (cmp_type == STRING_RESULT) { for (i= 0; i < 3; i++) { if (args[i]->is_temporal_with_date()) datetime_items_found++; else if (args[i]->field_type() == MYSQL_TYPE_TIME) time_items_found++; } } if (datetime_items_found + time_items_found == 3) { if (time_items_found == 3) { // All items are TIME cmp_type= INT_RESULT; compare_as_temporal_times= true; } else { /* There is at least one DATE or DATETIME item, all other items are DATE, DATETIME or TIME. */ cmp_type= INT_RESULT; compare_as_temporal_dates= true; } } else if (datetime_items_found > 0) { /* There is at least one DATE or DATETIME item. All other items are DATE, DATETIME or strings. */ compare_as_dates_with_strings= true; ge_cmp.set_datetime_cmp_func(this, args, args + 1); le_cmp.set_datetime_cmp_func(this, args, args + 2); } else if (args[0]->real_item()->type() == FIELD_ITEM && thd->lex->sql_command != SQLCOM_CREATE_VIEW && thd->lex->sql_command != SQLCOM_SHOW_CREATE) { Item_field *field_item= (Item_field*) (args[0]->real_item()); if (field_item->field->can_be_compared_as_longlong()) { /* The following can't be recoded with || as convert_constant_item changes the argument */ const bool cvt_arg1= convert_constant_item(thd, field_item, &args[1]); const bool cvt_arg2= convert_constant_item(thd, field_item, &args[2]); if (args[0]->is_temporal()) { // special handling of date/time etc. if (cvt_arg1 || cvt_arg2) cmp_type=INT_RESULT; } else { if (cvt_arg1 && cvt_arg2) cmp_type=INT_RESULT; } if (args[0]->is_temporal() && args[1]->is_temporal() && args[2]->is_temporal()) { /* An expression: time_or_datetime_field BETWEEN const_number_or_time_or_datetime_expr1 AND const_number_or_time_or_datetime_expr2 was rewritten to: time_field BETWEEN Item_time_with_ref1 AND Item_time_with_ref2 or datetime_field BETWEEN Item_datetime_with_ref1 AND Item_datetime_with_ref2 */ if (field_item->field_type() == MYSQL_TYPE_TIME) compare_as_temporal_times= true; else if (field_item->is_temporal_with_date()) compare_as_temporal_dates= true; } } } } float Item_func_between::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; const float filter= fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_BETWEEN); return negated ? 1.0f - filter : filter; } /** A helper function for Item_func_between::val_int() to avoid over/underflow when comparing large values. @tparam LLorULL ulonglong or longlong @param compare_as_temporal_dates copy of Item_func_between member variable @param compare_as_temporal_times copy of Item_func_between member variable @param negated copy of Item_func_between member variable @param args copy of Item_func_between member variable @param null_value [out] set to true if result is not true/false @retval true if: args[1] <= args[0] <= args[2] */ template<typename LLorULL> longlong compare_between_int_result(bool compare_as_temporal_dates, bool compare_as_temporal_times, bool negated, Item **args, my_bool *null_value) { { LLorULL a, b, value; value= compare_as_temporal_times ? args[0]->val_time_temporal() : compare_as_temporal_dates ? args[0]->val_date_temporal() : args[0]->val_int(); if ((*null_value= args[0]->null_value)) return 0; /* purecov: inspected */ if (compare_as_temporal_times) { a= args[1]->val_time_temporal(); b= args[2]->val_time_temporal(); } else if (compare_as_temporal_dates) { a= args[1]->val_date_temporal(); b= args[2]->val_date_temporal(); } else { a= args[1]->val_int(); b= args[2]->val_int(); } if (args[0]->unsigned_flag) { /* Comparing as unsigned. value BETWEEN <some negative number> AND <some number> rewritten to value BETWEEN 0 AND <some number> */ if (!args[1]->unsigned_flag && static_cast<longlong>(a) < 0) a = 0; /* Comparing as unsigned. value BETWEEN <some number> AND <some negative number> rewritten to 1 BETWEEN <some number> AND 0 */ if (!args[2]->unsigned_flag && static_cast<longlong>(b) < 0) { b= 0; value= 1; } } else { // Comparing as signed, but b is unsigned, and really large if (args[2]->unsigned_flag && (longlong) b < 0) b= LLONG_MAX; } if (!args[1]->null_value && !args[2]->null_value) return (longlong) ((value >= a && value <= b) != negated); if (args[1]->null_value && args[2]->null_value) *null_value= 1; else if (args[1]->null_value) { *null_value= value <= b; // not null if false range. } else { *null_value= value >= a; } return value; } } longlong Item_func_between::val_int() { // ANSI BETWEEN assert(fixed == 1); if (compare_as_dates_with_strings) { int ge_res, le_res; ge_res= ge_cmp.compare(); if ((null_value= args[0]->null_value)) return 0; le_res= le_cmp.compare(); if (!args[1]->null_value && !args[2]->null_value) return (longlong) ((ge_res >= 0 && le_res <=0) != negated); else if (args[1]->null_value) { null_value= le_res > 0; // not null if false range. } else { null_value= ge_res < 0; } } else if (cmp_type == STRING_RESULT) { String *value,*a,*b; value=args[0]->val_str(&value0); if ((null_value=args[0]->null_value)) return 0; a=args[1]->val_str(&value1); b=args[2]->val_str(&value2); if (!args[1]->null_value && !args[2]->null_value) return (longlong) ((sortcmp(value,a,cmp_collation.collation) >= 0 && sortcmp(value,b,cmp_collation.collation) <= 0) != negated); if (args[1]->null_value && args[2]->null_value) null_value=1; else if (args[1]->null_value) { // Set to not null if false range. null_value= sortcmp(value,b,cmp_collation.collation) <= 0; } else { // Set to not null if false range. null_value= sortcmp(value,a,cmp_collation.collation) >= 0; } } else if (cmp_type == INT_RESULT) { longlong value; if (args[0]->unsigned_flag) value= compare_between_int_result<ulonglong>(compare_as_temporal_dates, compare_as_temporal_times, negated, args, &null_value); else value= compare_between_int_result<longlong>(compare_as_temporal_dates, compare_as_temporal_times, negated, args, &null_value); if (args[0]->null_value) return 0; /* purecov: inspected */ if (!args[1]->null_value && !args[2]->null_value) return value; } else if (cmp_type == DECIMAL_RESULT) { my_decimal dec_buf, *dec= args[0]->val_decimal(&dec_buf), a_buf, *a_dec, b_buf, *b_dec; if ((null_value=args[0]->null_value)) return 0; /* purecov: inspected */ a_dec= args[1]->val_decimal(&a_buf); b_dec= args[2]->val_decimal(&b_buf); if (!args[1]->null_value && !args[2]->null_value) return (longlong) ((my_decimal_cmp(dec, a_dec) >= 0 && my_decimal_cmp(dec, b_dec) <= 0) != negated); if (args[1]->null_value && args[2]->null_value) null_value=1; else if (args[1]->null_value) null_value= (my_decimal_cmp(dec, b_dec) <= 0); else null_value= (my_decimal_cmp(dec, a_dec) >= 0); } else { double value= args[0]->val_real(),a,b; if ((null_value=args[0]->null_value)) return 0; /* purecov: inspected */ a= args[1]->val_real(); b= args[2]->val_real(); if (!args[1]->null_value && !args[2]->null_value) return (longlong) ((value >= a && value <= b) != negated); if (args[1]->null_value && args[2]->null_value) null_value=1; else if (args[1]->null_value) { null_value= value <= b; // not null if false range. } else { null_value= value >= a; } } return (longlong) (!null_value && negated); } void Item_func_between::print(String *str, enum_query_type query_type) { str->append('('); args[0]->print(str, query_type); if (negated) str->append(STRING_WITH_LEN(" not")); str->append(STRING_WITH_LEN(" between ")); args[1]->print(str, query_type); str->append(STRING_WITH_LEN(" and ")); args[2]->print(str, query_type); str->append(')'); } void Item_func_ifnull::fix_length_and_dec() { uint32 char_length; agg_result_type(&hybrid_type, &unsigned_flag, args, 2); cached_field_type= agg_field_type(args, 2); maybe_null=args[1]->maybe_null; decimals= max(args[0]->decimals, args[1]->decimals); if (hybrid_type == DECIMAL_RESULT || hybrid_type == INT_RESULT) { int len0= args[0]->max_char_length() - args[0]->decimals - (args[0]->unsigned_flag ? 0 : 1); int len1= args[1]->max_char_length() - args[1]->decimals - (args[1]->unsigned_flag ? 0 : 1); char_length= max(len0, len1) + decimals + (unsigned_flag ? 0 : 1); } else char_length= max(args[0]->max_char_length(), args[1]->max_char_length()); switch (hybrid_type) { case STRING_RESULT: if (count_string_result_length(cached_field_type, args, arg_count)) return; break; case DECIMAL_RESULT: case REAL_RESULT: break; case INT_RESULT: decimals= 0; break; case ROW_RESULT: default: assert(0); } fix_char_length(char_length); } uint Item_func_ifnull::decimal_precision() const { int arg0_int_part= args[0]->decimal_int_part(); int arg1_int_part= args[1]->decimal_int_part(); int max_int_part= max(arg0_int_part, arg1_int_part); int precision= max_int_part + decimals; return min<uint>(precision, DECIMAL_MAX_PRECISION); } Field *Item_func_ifnull::tmp_table_field(TABLE *table) { return tmp_table_field_from_field_type(table, 0); } double Item_func_ifnull::real_op() { assert(fixed == 1); double value= args[0]->val_real(); if (!args[0]->null_value) { null_value=0; return value; } value= args[1]->val_real(); if ((null_value=args[1]->null_value)) return 0.0; return value; } longlong Item_func_ifnull::int_op() { assert(fixed == 1); longlong value=args[0]->val_int(); if (!args[0]->null_value) { null_value=0; return value; } value=args[1]->val_int(); if ((null_value=args[1]->null_value)) return 0; return value; } my_decimal *Item_func_ifnull::decimal_op(my_decimal *decimal_value) { assert(fixed == 1); my_decimal *value= args[0]->val_decimal(decimal_value); if (!args[0]->null_value) { null_value= 0; return value; } value= args[1]->val_decimal(decimal_value); if ((null_value= args[1]->null_value)) return 0; return value; } bool Item_func_ifnull::val_json(Json_wrapper *result) { null_value= 0; if (json_value(args, 0, result)) return error_json(); if (!args[0]->null_value) return false; if (json_value(args, 1, result)) return error_json(); null_value= args[1]->null_value; return false; } bool Item_func_ifnull::date_op(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) { assert(fixed == 1); if (!args[0]->get_date(ltime, fuzzydate)) return (null_value= false); return (null_value= args[1]->get_date(ltime, fuzzydate)); } bool Item_func_ifnull::time_op(MYSQL_TIME *ltime) { assert(fixed == 1); if (!args[0]->get_time(ltime)) return (null_value= false); return (null_value= args[1]->get_time(ltime)); } String * Item_func_ifnull::str_op(String *str) { assert(fixed == 1); String *res =args[0]->val_str(str); if (!args[0]->null_value) { null_value=0; res->set_charset(collation.collation); return res; } res=args[1]->val_str(str); if ((null_value=args[1]->null_value)) return 0; res->set_charset(collation.collation); return res; } /** Perform context analysis of an IF item tree. This function performs context analysis (name resolution) and calculates various attributes of the item tree with Item_func_if as its root. The function saves in ref the pointer to the item or to a newly created item that is considered as a replacement for the original one. @param thd reference to the global context of the query thread @param ref pointer to Item* variable where pointer to resulting "fixed" item is to be assigned @note Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on a predicate/function level. Then it's easy to show that: @verbatim T0(IF(e,e1,e2) = T1(IF(e,e1,e2)) T1(IF(e,e1,e2)) = intersection(T1(e1),T1(e2)) @endverbatim @retval 0 ok @retval 1 got error */ bool Item_func_if::fix_fields(THD *thd, Item **ref) { assert(fixed == 0); args[0]->top_level_item(); if (Item_func::fix_fields(thd, ref)) return 1; not_null_tables_cache= (args[1]->not_null_tables() & args[2]->not_null_tables()); return 0; } void Item_func_if::fix_after_pullout(st_select_lex *parent_select, st_select_lex *removed_select) { Item_func::fix_after_pullout(parent_select, removed_select); not_null_tables_cache= (args[1]->not_null_tables() & args[2]->not_null_tables()); } void Item_func_if::cache_type_info(Item *source) { collation.set(source->collation); cached_field_type= source->field_type(); cached_result_type= source->result_type(); decimals= source->decimals; max_length= source->max_length; maybe_null= source->maybe_null; unsigned_flag= source->unsigned_flag; } void Item_func_if::fix_length_and_dec() { // Let IF(cond, expr, NULL) and IF(cond, NULL, expr) inherit type from expr. if (args[1]->type() == NULL_ITEM) { cache_type_info(args[2]); maybe_null= true; // If both arguments are NULL, make resulting type BINARY(0). if (args[2]->type() == NULL_ITEM) cached_field_type= MYSQL_TYPE_STRING; return; } if (args[2]->type() == NULL_ITEM) { cache_type_info(args[1]); maybe_null= true; return; } agg_result_type(&cached_result_type, &unsigned_flag, args + 1, 2); cached_field_type= agg_field_type(args + 1, 2); maybe_null= args[1]->maybe_null || args[2]->maybe_null; decimals= max(args[1]->decimals, args[2]->decimals); if (cached_result_type == STRING_RESULT) { if (count_string_result_length(cached_field_type, args + 1, 2)) return; } else { collation.set_numeric(); // Number } uint32 char_length; if ((cached_result_type == DECIMAL_RESULT ) || (cached_result_type == INT_RESULT)) { int len1= args[1]->max_length - args[1]->decimals - (args[1]->unsigned_flag ? 0 : 1); int len2= args[2]->max_length - args[2]->decimals - (args[2]->unsigned_flag ? 0 : 1); char_length= max(len1, len2) + decimals + (unsigned_flag ? 0 : 1); } else char_length= max(args[1]->max_char_length(), args[2]->max_char_length()); fix_char_length(char_length); } uint Item_func_if::decimal_precision() const { int arg1_prec= args[1]->decimal_int_part(); int arg2_prec= args[2]->decimal_int_part(); int precision=max(arg1_prec,arg2_prec) + decimals; return min<uint>(precision, DECIMAL_MAX_PRECISION); } double Item_func_if::val_real() { assert(fixed == 1); Item *arg= args[0]->val_bool() ? args[1] : args[2]; double value= arg->val_real(); null_value=arg->null_value; return value; } longlong Item_func_if::val_int() { assert(fixed == 1); Item *arg= args[0]->val_bool() ? args[1] : args[2]; longlong value=arg->val_int(); null_value=arg->null_value; return value; } String * Item_func_if::val_str(String *str) { assert(fixed == 1); switch (field_type()) { case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_TIMESTAMP: return val_string_from_datetime(str); case MYSQL_TYPE_DATE: return val_string_from_date(str); case MYSQL_TYPE_TIME: return val_string_from_time(str); default: { Item *item= args[0]->val_bool() ? args[1] : args[2]; String *res; if ((res= item->val_str(str))) { res->set_charset(collation.collation); null_value= 0; return res; } } } null_value= true; return (String *) 0; } my_decimal * Item_func_if::val_decimal(my_decimal *decimal_value) { assert(fixed == 1); Item *arg= args[0]->val_bool() ? args[1] : args[2]; my_decimal *value= arg->val_decimal(decimal_value); null_value= arg->null_value; return value; } bool Item_func_if::val_json(Json_wrapper *wr) { assert(fixed == 1); Item *arg= args[0]->val_bool() ? args[1] : args[2]; Item *args[]= {arg}; bool ok= json_value(args, 0, wr); null_value= arg->null_value; return ok; } bool Item_func_if::get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) { assert(fixed == 1); Item *arg= args[0]->val_bool() ? args[1] : args[2]; return (null_value= arg->get_date(ltime, fuzzydate)); } bool Item_func_if::get_time(MYSQL_TIME *ltime) { assert(fixed == 1); Item *arg= args[0]->val_bool() ? args[1] : args[2]; return (null_value= arg->get_time(ltime)); } void Item_func_nullif::fix_length_and_dec() { Item_bool_func2::fix_length_and_dec(); maybe_null=1; if (args[0]) // Only false if EOM { max_length=args[0]->max_length; decimals=args[0]->decimals; unsigned_flag= args[0]->unsigned_flag; cached_result_type= args[0]->result_type(); if (cached_result_type == STRING_RESULT && agg_arg_charsets_for_comparison(collation, args, arg_count)) return; } } /** @note Note that we have to evaluate the first argument twice as the compare may have been done with a different type than return value @return NULL if arguments are equal @return the first argument if not equal */ double Item_func_nullif::val_real() { assert(fixed == 1); double value; if (!cmp.compare()) { null_value=1; return 0.0; } value= args[0]->val_real(); null_value=args[0]->null_value; return value; } longlong Item_func_nullif::val_int() { assert(fixed == 1); longlong value; if (!cmp.compare()) { null_value=1; return 0; } value=args[0]->val_int(); null_value=args[0]->null_value; return value; } String * Item_func_nullif::val_str(String *str) { assert(fixed == 1); String *res; if (!cmp.compare()) { null_value=1; return 0; } res=args[0]->val_str(str); null_value=args[0]->null_value; return res; } my_decimal * Item_func_nullif::val_decimal(my_decimal * decimal_value) { assert(fixed == 1); my_decimal *res; if (!cmp.compare()) { null_value=1; return 0; } res= args[0]->val_decimal(decimal_value); null_value= args[0]->null_value; return res; } bool Item_func_nullif::is_null() { return (null_value= (!cmp.compare() ? 1 : args[0]->null_value)); } /** Find and return matching items for CASE or ELSE item if all compares are failed or NULL if ELSE item isn't defined. IMPLEMENTATION In order to do correct comparisons of the CASE expression (the expression between CASE and the first WHEN) with each WHEN expression several comparators are used. One for each result type. CASE expression can be evaluated up to # of different result types are used. To check whether the CASE expression already was evaluated for a particular result type a bit mapped variable value_added_map is used. Result types are mapped to it according to their int values i.e. STRING_RESULT is mapped to bit 0, REAL_RESULT to bit 1, so on. @retval NULL Nothing found and there is no ELSE expression defined @retval item Found item or ELSE item if defined and all comparisons are failed */ Item *Item_func_case::find_item(String *str) { uint value_added_map= 0; if (first_expr_num == -1) { for (uint i=0 ; i < ncases ; i+=2) { // No expression between CASE and the first WHEN if (args[i]->val_bool()) return args[i+1]; continue; } } else { /* Compare every WHEN argument with it and return the first match */ for (uint i=0 ; i < ncases ; i+=2) { if (args[i]->real_item()->type() == NULL_ITEM) continue; cmp_type= item_cmp_type(left_result_type, args[i]->result_type()); assert(cmp_type != ROW_RESULT); assert(cmp_items[(uint)cmp_type]); if (!(value_added_map & (1U << (uint)cmp_type))) { cmp_items[(uint)cmp_type]->store_value(args[first_expr_num]); if ((null_value=args[first_expr_num]->null_value)) return else_expr_num != -1 ? args[else_expr_num] : 0; value_added_map|= 1U << (uint)cmp_type; } if (cmp_items[(uint)cmp_type]->cmp(args[i]) == FALSE) return args[i + 1]; } } // No, WHEN clauses all missed, return ELSE expression return else_expr_num != -1 ? args[else_expr_num] : 0; } String *Item_func_case::val_str(String *str) { assert(fixed == 1); switch (field_type()) { case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_TIMESTAMP: return val_string_from_datetime(str); case MYSQL_TYPE_DATE: return val_string_from_date(str); case MYSQL_TYPE_TIME: return val_string_from_time(str); default: { Item *item= find_item(str); if (item) { String *res; if ((res= item->val_str(str))) { res->set_charset(collation.collation); null_value= 0; return res; } } } } null_value= true; return (String *) 0; } longlong Item_func_case::val_int() { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String dummy_str(buff,sizeof(buff),default_charset()); Item *item=find_item(&dummy_str); longlong res; if (!item) { null_value=1; return 0; } res=item->val_int(); null_value=item->null_value; return res; } double Item_func_case::val_real() { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String dummy_str(buff,sizeof(buff),default_charset()); Item *item=find_item(&dummy_str); double res; if (!item) { null_value=1; return 0; } res= item->val_real(); null_value=item->null_value; return res; } my_decimal *Item_func_case::val_decimal(my_decimal *decimal_value) { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String dummy_str(buff, sizeof(buff), default_charset()); Item *item= find_item(&dummy_str); my_decimal *res; if (!item) { null_value=1; return 0; } res= item->val_decimal(decimal_value); null_value= item->null_value; return res; } bool Item_func_case::val_json(Json_wrapper *wr) { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String dummy_str(buff, sizeof(buff), default_charset()); Item *item= find_item(&dummy_str); if (!item) { null_value= true; return false; } Item *args[]= {item}; return json_value(args, 0, wr); } bool Item_func_case::get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String dummy_str(buff, sizeof(buff), default_charset()); Item *item= find_item(&dummy_str); if (!item) return (null_value= true); return (null_value= item->get_date(ltime, fuzzydate)); } bool Item_func_case::get_time(MYSQL_TIME *ltime) { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String dummy_str(buff, sizeof(buff), default_charset()); Item *item= find_item(&dummy_str); if (!item) return (null_value= true); return (null_value= item->get_time(ltime)); } bool Item_func_case::fix_fields(THD *thd, Item **ref) { /* buff should match stack usage from Item_func_case::val_int() -> Item_func_case::find_item() */ uchar buff[MAX_FIELD_WIDTH*2+sizeof(String)*2+sizeof(String*)*2+sizeof(double)*2+sizeof(longlong)*2]; bool res= Item_func::fix_fields(thd, ref); /* Call check_stack_overrun after fix_fields to be sure that stack variable is not optimized away */ if (check_stack_overrun(thd, STACK_MIN_SIZE, buff)) return TRUE; // Fatal error flag is set! return res; } /** Check if (*place) and new_value points to different Items and call THD::change_item_tree() if needed. This function is a workaround for implementation deficiency in Item_func_case. The problem there is that the 'args' attribute contains Items from different expressions. The function must not be used elsewhere and will be remove eventually. */ static void change_item_tree_if_needed(THD *thd, Item **place, Item *new_value) { if (*place == new_value) return; thd->change_item_tree(place, new_value); } /** This function is a shared part to fix_length_and_dec() for numeric result type of CASE and COALESCE. COALESCE is a CASE abbreviation according to the standard. */ static void fix_num_length_and_dec_shared_for_case(Item_func *item_func, Item_result result_type, Item **item, uint nitems) { switch (result_type) { case DECIMAL_RESULT: item_func->count_decimal_length(item, nitems); break; case REAL_RESULT: item_func->count_real_length(item, nitems); break; case INT_RESULT: item_func->count_only_length(item, nitems); item_func->decimals= 0; break; case ROW_RESULT: default: assert(0); } } void Item_func_case::fix_length_and_dec() { Item **agg; uint nagg; uint found_types= 0; THD *thd= current_thd; if (!(agg= (Item**) sql_alloc(sizeof(Item*)*(ncases+1)))) return; // Determine nullability based on THEN and ELSE expressions: maybe_null= else_expr_num == -1 || args[else_expr_num]->maybe_null; for (Item **arg= args + 1; arg < args + arg_count; arg+= 2) maybe_null|= (*arg)->maybe_null; /* Aggregate all THEN and ELSE expression types and collations when string result */ for (nagg= 0; nagg < ncases / 2; nagg++) agg[nagg]= args[nagg * 2 + 1]; if (else_expr_num != -1) agg[nagg++]= args[else_expr_num]; cached_field_type= agg_field_type(agg, nagg); agg_result_type(&cached_result_type, &unsigned_flag, agg, nagg); if (cached_result_type == STRING_RESULT) { /* Note: String result type is the same for CASE and COALESCE. */ if (count_string_result_length(cached_field_type, agg, nagg)) return; /* Copy all THEN and ELSE items back to args[] array. Some of the items might have been changed to Item_func_conv_charset. */ for (nagg= 0 ; nagg < ncases / 2 ; nagg++) change_item_tree_if_needed(thd, &args[nagg * 2 + 1], agg[nagg]); if (else_expr_num != -1) change_item_tree_if_needed(thd, &args[else_expr_num], agg[nagg++]); } else { collation.set_numeric(); fix_num_length_and_dec_shared_for_case(this, cached_result_type, agg, nagg); } /* Aggregate first expression and all WHEN expression types and collations when string comparison */ if (first_expr_num != -1) { uint i; agg[0]= args[first_expr_num]; left_result_type= agg[0]->result_type(); /* As the first expression and WHEN expressions are intermixed in args[] array THEN and ELSE items, extract the first expression and all WHEN expressions into a temporary array, to process them easier. */ for (nagg= 0; nagg < ncases/2 ; nagg++) agg[nagg+1]= args[nagg*2]; nagg++; if (!(found_types= collect_cmp_types(agg, nagg))) return; if (found_types & (1U << STRING_RESULT)) { /* If we'll do string comparison, we also need to aggregate character set and collation for first/WHEN items and install converters for some of them to cmp_collation when necessary. This is done because cmp_item compatators cannot compare strings in two different character sets. Some examples when we install converters: 1. Converter installed for the first expression: CASE latin1_item WHEN utf16_item THEN ... END is replaced to: CASE CONVERT(latin1_item USING utf16) WHEN utf16_item THEN ... END 2. Converter installed for the left WHEN item: CASE utf16_item WHEN latin1_item THEN ... END is replaced to: CASE utf16_item WHEN CONVERT(latin1_item USING utf16) THEN ... END */ if (agg_arg_charsets_for_comparison(cmp_collation, agg, nagg)) return; /* Now copy first expression and all WHEN expressions back to args[] arrray, because some of the items might have been changed to converters (e.g. Item_func_conv_charset, or Item_string for constants). */ change_item_tree_if_needed(thd, &args[first_expr_num], agg[0]); for (nagg= 0; nagg < ncases / 2; nagg++) change_item_tree_if_needed(thd, &args[nagg * 2], agg[nagg + 1]); } for (i= 0; i <= (uint)DECIMAL_RESULT; i++) { if (found_types & (1U << i) && !cmp_items[i]) { assert((Item_result)i != ROW_RESULT); if (!(cmp_items[i]= cmp_item::get_comparator((Item_result)i, args[first_expr_num], cmp_collation.collation))) return; } } /* Set cmp_context of all WHEN arguments. This prevents Item_field::equal_fields_propagator() from transforming a zerofill argument into a string constant. Such a change would require rebuilding cmp_items. */ for (i= 0; i < ncases; i+= 2) args[i]->cmp_context= item_cmp_type(left_result_type, args[i]->result_type()); } } uint Item_func_case::decimal_precision() const { int max_int_part=0; for (uint i=0 ; i < ncases ; i+=2) set_if_bigger(max_int_part, args[i+1]->decimal_int_part()); if (else_expr_num != -1) set_if_bigger(max_int_part, args[else_expr_num]->decimal_int_part()); return min<uint>(max_int_part + decimals, DECIMAL_MAX_PRECISION); } /** @todo Fix this so that it prints the whole CASE expression */ void Item_func_case::print(String *str, enum_query_type query_type) { str->append(STRING_WITH_LEN("(case ")); if (first_expr_num != -1) { args[first_expr_num]->print(str, query_type); str->append(' '); } for (uint i=0 ; i < ncases ; i+=2) { str->append(STRING_WITH_LEN("when ")); args[i]->print(str, query_type); str->append(STRING_WITH_LEN(" then ")); args[i+1]->print(str, query_type); str->append(' '); } if (else_expr_num != -1) { str->append(STRING_WITH_LEN("else ")); args[else_expr_num]->print(str, query_type); str->append(' '); } str->append(STRING_WITH_LEN("end)")); } void Item_func_case::cleanup() { uint i; DBUG_ENTER("Item_func_case::cleanup"); Item_func::cleanup(); for (i= 0; i <= (uint)DECIMAL_RESULT; i++) { delete cmp_items[i]; cmp_items[i]= 0; } DBUG_VOID_RETURN; } /** Coalesce - return first not NULL argument. */ Item_func_coalesce::Item_func_coalesce(const POS &pos, PT_item_list *list) : Item_func_numhybrid(pos, list) {} String *Item_func_coalesce::str_op(String *str) { assert(fixed == 1); null_value=0; for (uint i=0 ; i < arg_count ; i++) { String *res; if ((res=args[i]->val_str(str))) return res; } null_value=1; return 0; } bool Item_func_coalesce::val_json(Json_wrapper *wr) { assert(fixed == 1); null_value= false; for (uint i= 0; i < arg_count; i++) { if (json_value(args, i, wr)) return error_json(); if (!args[i]->null_value) return false; } null_value= true; return false; } longlong Item_func_coalesce::int_op() { assert(fixed == 1); null_value=0; for (uint i=0 ; i < arg_count ; i++) { longlong res=args[i]->val_int(); if (!args[i]->null_value) return res; } null_value=1; return 0; } double Item_func_coalesce::real_op() { assert(fixed == 1); null_value=0; for (uint i=0 ; i < arg_count ; i++) { double res= args[i]->val_real(); if (!args[i]->null_value) return res; } null_value=1; return 0; } my_decimal *Item_func_coalesce::decimal_op(my_decimal *decimal_value) { assert(fixed == 1); null_value= 0; for (uint i= 0; i < arg_count; i++) { my_decimal *res= args[i]->val_decimal(decimal_value); if (!args[i]->null_value) return res; } null_value=1; return 0; } bool Item_func_coalesce::date_op(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) { assert(fixed == 1); for (uint i= 0; i < arg_count; i++) { if (!args[i]->get_date(ltime, fuzzydate)) return (null_value= false); } return (null_value= true); } bool Item_func_coalesce::time_op(MYSQL_TIME *ltime) { assert(fixed == 1); for (uint i= 0; i < arg_count; i++) { if (!args[i]->get_time(ltime)) return (null_value= false); } return (null_value= true); } void Item_func_coalesce::fix_length_and_dec() { cached_field_type= agg_field_type(args, arg_count); agg_result_type(&hybrid_type, &unsigned_flag, args, arg_count); if (hybrid_type == STRING_RESULT) count_string_result_length(cached_field_type, args, arg_count); else fix_num_length_and_dec_shared_for_case(this, hybrid_type, args, arg_count); } /**************************************************************************** Classes and function for the IN operator ****************************************************************************/ /* Determine which of the signed longlong arguments is bigger SYNOPSIS cmp_longs() a_val left argument b_val right argument DESCRIPTION This function will compare two signed longlong arguments and will return -1, 0, or 1 if left argument is smaller than, equal to or greater than the right argument. RETURN VALUE -1 left argument is smaller than the right argument. 0 left argument is equal to the right argument. 1 left argument is greater than the right argument. */ static inline int cmp_longs (longlong a_val, longlong b_val) { return a_val < b_val ? -1 : a_val == b_val ? 0 : 1; } /* Determine which of the unsigned longlong arguments is bigger SYNOPSIS cmp_ulongs() a_val left argument b_val right argument DESCRIPTION This function will compare two unsigned longlong arguments and will return -1, 0, or 1 if left argument is smaller than, equal to or greater than the right argument. RETURN VALUE -1 left argument is smaller than the right argument. 0 left argument is equal to the right argument. 1 left argument is greater than the right argument. */ static inline int cmp_ulongs (ulonglong a_val, ulonglong b_val) { return a_val < b_val ? -1 : a_val == b_val ? 0 : 1; } /* Compare two integers in IN value list format (packed_longlong) SYNOPSIS cmp_longlong() a left argument b right argument DESCRIPTION This function will compare two integer arguments in the IN value list format and will return -1, 0, or 1 if left argument is smaller than, equal to or greater than the right argument. It's used in sorting the IN values list and finding an element in it. Depending on the signedness of the arguments cmp_longlong() will compare them as either signed (using cmp_longs()) or unsigned (using cmp_ulongs()). RETURN VALUE -1 left argument is smaller than the right argument. 0 left argument is equal to the right argument. 1 left argument is greater than the right argument. */ int cmp_longlong(const in_longlong::packed_longlong *a, const in_longlong::packed_longlong *b) { if (a->unsigned_flag != b->unsigned_flag) { /* One of the args is unsigned and is too big to fit into the positive signed range. Report no match. */ if ((a->unsigned_flag && ((ulonglong) a->val) > (ulonglong) LLONG_MAX) || (b->unsigned_flag && ((ulonglong) b->val) > (ulonglong) LLONG_MAX)) return a->unsigned_flag ? 1 : -1; /* Although the signedness differs both args can fit into the signed positive range. Make them signed and compare as usual. */ return cmp_longs (a->val, b->val); } if (a->unsigned_flag) return cmp_ulongs ((ulonglong) a->val, (ulonglong) b->val); else return cmp_longs (a->val, b->val); } class Cmp_longlong : public std::binary_function<const in_longlong::packed_longlong &, const in_longlong::packed_longlong &, bool> { public: bool operator()(const in_longlong::packed_longlong &a, const in_longlong::packed_longlong &b) { return cmp_longlong(&a, &b) < 0; } }; void in_longlong::sort() { std::sort(base.begin(), base.end(), Cmp_longlong()); } bool in_longlong::find_value(const void *value) const { const in_longlong::packed_longlong *val= static_cast<const in_longlong::packed_longlong*>(value); return std::binary_search(base.begin(), base.end(), *val, Cmp_longlong()); } bool in_longlong::compare_elems(uint pos1, uint pos2) const { return cmp_longlong(&base[pos1], &base[pos2]) != 0; } class Cmp_row : public std::binary_function<const cmp_item_row *, const cmp_item_row *, bool> { public: bool operator()(const cmp_item_row *a, const cmp_item_row *b) { return a->compare(b) < 0; } }; void in_row::sort() { std::sort(base_pointers.begin(), base_pointers.end(), Cmp_row()); } bool in_row::find_value(const void *value) const { const cmp_item_row *row= static_cast<const cmp_item_row*>(value); return std::binary_search(base_pointers.begin(), base_pointers.end(), row, Cmp_row()); } bool in_row::compare_elems(uint pos1, uint pos2) const { return base_pointers[pos1]->compare(base_pointers[pos2]) != 0; } bool in_vector::find_item(Item *item) { uchar *result=get_value(item); if (!result || !used_count) return false; // Null value return find_value(result); } in_string::in_string(THD *thd, uint elements, qsort2_cmp cmp_func, const CHARSET_INFO *cs) : in_vector(elements), tmp(buff, sizeof(buff), &my_charset_bin), base_objects(thd->mem_root, elements), base_pointers(thd->mem_root, elements), compare(cmp_func), collation(cs) { for (uint ix= 0; ix < elements; ++ix) { base_pointers[ix]= &base_objects[ix]; } } in_string::~in_string() { for (uint i= 0; i < base_objects.size(); i++) { base_objects[i].mem_free(); } } void in_string::set(uint pos, Item *item) { String *str= base_pointers[pos]; String *res= item->val_str(str); if (res && res != str) { if (res->uses_buffer_owned_by(str)) res->copy(); if (item->type() == Item::FUNC_ITEM) str->copy(*res); else *str= *res; } if (!str->charset()) { const CHARSET_INFO *cs; if (!(cs= item->collation.collation)) cs= &my_charset_bin; // Should never happen for STR items str->set_charset(cs); } } uchar *in_string::get_value(Item *item) { return (uchar*) item->val_str(&tmp); } class Cmp_string : public std::binary_function<const String *, const String *, bool> { public: Cmp_string(qsort2_cmp cmp_func, const CHARSET_INFO *cs) : compare(cmp_func), collation(cs) {} bool operator()(const String *a, const String *b) { return compare(collation, a, b) < 0; } private: qsort2_cmp compare; const CHARSET_INFO *collation; }; // Our String objects have strange copy semantics, sort pointers instead. void in_string::sort() { std::sort(base_pointers.begin(), base_pointers.end(), Cmp_string(compare, collation)); } bool in_string::find_value(const void *value) const { const String *str= static_cast<const String*>(value); return std::binary_search(base_pointers.begin(), base_pointers.end(), str, Cmp_string(compare, collation)); } bool in_string::compare_elems(uint pos1, uint pos2) const { return compare(collation, base_pointers[pos1], base_pointers[pos2]) != 0; } in_row::in_row(THD *thd, uint elements, Item * item) : in_vector(elements), base_objects(thd->mem_root, elements), base_pointers(thd->mem_root, elements) { for (uint ix= 0; ix < elements; ++ix) { base_pointers[ix]= &base_objects[ix]; } } in_row::~in_row() { delete_container_pointers(base_pointers); } uchar *in_row::get_value(Item *item) { tmp.store_value(item); if (item->is_null()) return 0; return (uchar *)&tmp; } void in_row::set(uint pos, Item *item) { DBUG_ENTER("in_row::set"); DBUG_PRINT("enter", ("pos: %u item: 0x%lx", pos, (ulong) item)); base_pointers[pos]->store_value_by_template(&tmp, item); DBUG_VOID_RETURN; } in_longlong::in_longlong(THD *thd, uint elements) : in_vector(elements), base(thd->mem_root, elements) { } void in_longlong::set(uint pos,Item *item) { struct packed_longlong *buff= &base[pos]; buff->val= item->val_int(); buff->unsigned_flag= item->unsigned_flag; } uchar *in_longlong::get_value(Item *item) { tmp.val= item->val_int(); if (item->null_value) return 0; tmp.unsigned_flag= item->unsigned_flag; return (uchar*) &tmp; } void in_time_as_longlong::set(uint pos,Item *item) { struct packed_longlong *buff= &base[pos]; buff->val= item->val_time_temporal(); buff->unsigned_flag= item->unsigned_flag; } uchar *in_time_as_longlong::get_value(Item *item) { tmp.val= item->val_time_temporal(); if (item->null_value) return 0; tmp.unsigned_flag= item->unsigned_flag; return (uchar*) &tmp; } void in_datetime_as_longlong::set(uint pos,Item *item) { struct packed_longlong *buff= &base[pos]; buff->val= item->val_date_temporal(); buff->unsigned_flag= item->unsigned_flag; } uchar *in_datetime_as_longlong::get_value(Item *item) { tmp.val= item->val_date_temporal(); if (item->null_value) return 0; tmp.unsigned_flag= item->unsigned_flag; return (uchar*) &tmp; } void in_datetime::set(uint pos,Item *item) { Item **tmp_item= &item; bool is_null; struct packed_longlong *buff= &base[pos]; buff->val= get_datetime_value(current_thd, &tmp_item, 0, warn_item, &is_null); buff->unsigned_flag= 1L; } uchar *in_datetime::get_value(Item *item) { bool is_null; Item **tmp_item= lval_cache ? &lval_cache : &item; tmp.val= get_datetime_value(current_thd, &tmp_item, &lval_cache, warn_item, &is_null); if (item->null_value) return 0; tmp.unsigned_flag= 1L; return (uchar*) &tmp; } in_double::in_double(THD *thd, uint elements) : in_vector(elements), base(thd->mem_root, elements) { } void in_double::set(uint pos,Item *item) { base[pos]= item->val_real(); } uchar *in_double::get_value(Item *item) { tmp= item->val_real(); if (item->null_value) return 0; /* purecov: inspected */ return (uchar*) &tmp; } void in_double::sort() { std::sort(base.begin(), base.end()); } bool in_double::find_value(const void *value) const { const double *dbl= static_cast<const double*>(value); return std::binary_search(base.begin(), base.end(), *dbl); } bool in_double::compare_elems(uint pos1, uint pos2) const { return base[pos1] != base[pos2]; } in_decimal::in_decimal(THD *thd, uint elements) : in_vector(elements), base(thd->mem_root, elements) { } void in_decimal::set(uint pos, Item *item) { /* as far as 'item' is constant, we can store reference on my_decimal */ my_decimal *dec= &base[pos]; my_decimal *res= item->val_decimal(dec); /* if item->val_decimal() is evaluated to NULL then res == 0 */ if (!item->null_value && res != dec) my_decimal2decimal(res, dec); } uchar *in_decimal::get_value(Item *item) { my_decimal *result= item->val_decimal(&val); if (item->null_value) return 0; return (uchar *)result; } void in_decimal::sort() { std::sort(base.begin(), base.end()); } bool in_decimal::find_value(const void *value) const { const my_decimal *dec= static_cast<const my_decimal*>(value); return std::binary_search(base.begin(), base.end(), *dec); } bool in_decimal::compare_elems(uint pos1, uint pos2) const { return base[pos1] != base[pos2]; } cmp_item* cmp_item::get_comparator(Item_result result_type, const Item *item, const CHARSET_INFO *cs) { switch (result_type) { case STRING_RESULT: /* Temporal types shouldn't be compared as strings. Since date/time formats may be different, e.g. '20000102' == '2000-01-02'." */ if (item->is_temporal()) return new cmp_item_datetime(item); else return new cmp_item_string(cs); case INT_RESULT: return new cmp_item_int; case REAL_RESULT: return new cmp_item_real; case ROW_RESULT: return new cmp_item_row; case DECIMAL_RESULT: return new cmp_item_decimal; default: assert(0); break; } return 0; // to satisfy compiler :) } cmp_item* cmp_item_string::make_same() { return new cmp_item_string(cmp_charset); } cmp_item* cmp_item_int::make_same() { return new cmp_item_int(); } cmp_item* cmp_item_real::make_same() { return new cmp_item_real(); } cmp_item* cmp_item_row::make_same() { return new cmp_item_row(); } cmp_item_row::~cmp_item_row() { DBUG_ENTER("~cmp_item_row"); DBUG_PRINT("enter",("this: 0x%lx", (long) this)); if (comparators) { for (uint i= 0; i < n; i++) { if (comparators[i]) delete comparators[i]; } } DBUG_VOID_RETURN; } void cmp_item_row::alloc_comparators(Item *item) { n= item->cols(); assert(comparators == NULL); if (!comparators) comparators= (cmp_item **) current_thd->mem_calloc(sizeof(cmp_item *)*n); if (comparators) { for (uint i= 0; i < n; i++) { assert(comparators[i] == NULL); Item *item_i= item->element_index(i); if (!(comparators[i]= cmp_item::get_comparator(item_i->result_type(), item_i, item_i->collation.collation))) break; // new failed if (item_i->result_type() == ROW_RESULT) static_cast<cmp_item_row*>(comparators[i])->alloc_comparators(item_i); } } } void cmp_item_row::store_value(Item *item) { DBUG_ENTER("cmp_item_row::store_value"); assert(comparators); if (comparators) { item->bring_value(); item->null_value= 0; for (uint i= 0; i < n; i++) { comparators[i]->store_value(item->element_index(i)); item->null_value|= item->element_index(i)->null_value; } } DBUG_VOID_RETURN; } void cmp_item_row::store_value_by_template(cmp_item *t, Item *item) { cmp_item_row *tmpl= (cmp_item_row*) t; if (tmpl->n != item->cols()) { my_error(ER_OPERAND_COLUMNS, MYF(0), tmpl->n); return; } n= tmpl->n; if ((comparators= (cmp_item **) sql_alloc(sizeof(cmp_item *)*n))) { item->bring_value(); item->null_value= 0; for (uint i=0; i < n; i++) { if (!(comparators[i]= tmpl->comparators[i]->make_same())) break; // new failed comparators[i]->store_value_by_template(tmpl->comparators[i], item->element_index(i)); item->null_value|= item->element_index(i)->null_value; } } } int cmp_item_row::cmp(Item *arg) { arg->null_value= 0; if (arg->cols() != n) { my_error(ER_OPERAND_COLUMNS, MYF(0), n); return 1; } bool was_null= 0; arg->bring_value(); for (uint i=0; i < n; i++) { const int rc= comparators[i]->cmp(arg->element_index(i)); switch (rc) { case UNKNOWN: was_null= true; break; case TRUE: return TRUE; case FALSE: break; // elements #i are equal } arg->null_value|= arg->element_index(i)->null_value; } return was_null ? UNKNOWN : FALSE; } int cmp_item_row::compare(const cmp_item *c) const { const cmp_item_row *l_cmp= down_cast<const cmp_item_row*>(c); for (uint i=0; i < n; i++) { int res; if ((res= comparators[i]->compare(l_cmp->comparators[i]))) return res; } return 0; } void cmp_item_decimal::store_value(Item *item) { my_decimal *val= item->val_decimal(&value); /* val may be zero if item is nnull */ if (val && val != &value) my_decimal2decimal(val, &value); set_null_value(item->null_value); } int cmp_item_decimal::cmp(Item *arg) { my_decimal tmp_buf, *tmp= arg->val_decimal(&tmp_buf); return (m_null_value || arg->null_value) ? UNKNOWN : (my_decimal_cmp(&value, tmp) != 0); } int cmp_item_decimal::compare(const cmp_item *arg) const { const cmp_item_decimal *l_cmp= down_cast<const cmp_item_decimal*>(arg); return my_decimal_cmp(&value, &l_cmp->value); } cmp_item* cmp_item_decimal::make_same() { return new cmp_item_decimal(); } cmp_item_datetime::cmp_item_datetime(const Item *warn_item_arg) :warn_item(warn_item_arg), lval_cache(0), has_date(warn_item_arg->is_temporal_with_date()) {} void cmp_item_datetime::store_value(Item *item) { bool is_null; Item **tmp_item= lval_cache ? &lval_cache : &item; if (has_date) value= get_datetime_value(current_thd, &tmp_item, &lval_cache, warn_item, &is_null); else value= get_time_value(current_thd, &tmp_item, &lval_cache, warn_item, &is_null); set_null_value(item->null_value); } int cmp_item_datetime::cmp(Item *arg) { bool is_null; Item **tmp_item= &arg; longlong value2= 0; if (has_date) value2= get_datetime_value(current_thd, &tmp_item, 0, warn_item, &is_null); else value2= get_time_value(current_thd, &tmp_item, 0, warn_item, &is_null); const bool rc= (value != value2); return (m_null_value || arg->null_value) ? UNKNOWN : rc; } int cmp_item_datetime::compare(const cmp_item *ci) const { const cmp_item_datetime *l_cmp= down_cast<const cmp_item_datetime*>(ci); return (value < l_cmp->value) ? -1 : ((value == l_cmp->value) ? 0 : 1); } cmp_item *cmp_item_datetime::make_same() { return new cmp_item_datetime(warn_item); } float Item_func_in::get_single_col_filtering_effect(Item_ident *fieldref, table_map filter_for_table, const MY_BITMAP *fields_to_ignore, double rows_in_table) { /* Does not contribute to filtering effect if 1) This field belongs to another table. 2) Filter effect for this field has already been taken into account. 'fieldref' may be a field or a reference to a field (through a view, to an outer table etc) */ if ((fieldref->used_tables() != filter_for_table) || // 1) bitmap_is_set(fields_to_ignore, static_cast<Item_field*> (fieldref->real_item())->field->field_index)) // 2) return COND_FILTER_ALLPASS; const Item_field *fld= (Item_field*)fieldref->real_item(); return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); } float Item_func_in::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { assert((read_tables & filter_for_table) == 0); /* To contribute to filtering effect, the condition must refer to exactly one unread table: the table filtering is currently calculated for. Dependent subqueries are not considered available values and no filtering should be calculated for this item if the IN list contains one. dep_subq_in_list is 'true' if the IN list contains a dependent subquery. */ if ((used_tables() & ~read_tables) != filter_for_table || dep_subq_in_list) return COND_FILTER_ALLPASS; /* No matter how many row values are input the filtering effect shall not be higher than in_max_filter (currently 0.5). */ const float in_max_filter= 0.5f; float filter= COND_FILTER_ALLPASS; if (args[0]->type() == Item::ROW_ITEM) { /* This is a row value IN predicate: "WHERE (col1, col2, ...) IN ((1,2,..), ...)" which can be rewritten to: "WHERE (col1=1 AND col2=2...) OR (col1=.. AND col2=...) OR ..." The filtering effect is: filter= #row_values * filter(<single_row_value>) where filter(<single_row_value>) = filter(col1) * filter(col2) * ... In other words, we ignore the fact that there could be identical row values since writing "WHERE (a,b) IN ((1,1), (1,1), ...)" is not expected input from a user. */ Item_row* lhs_row= static_cast<Item_row*>(args[0]); // For all items in the left row float single_rowval_filter= COND_FILTER_ALLPASS; for (uint i= 0; i < lhs_row->cols(); i++) { /* May contribute to condition filtering only if lhs_row->element_index(i) is a field or a reference to a field (through a view, to an outer table etc) */ if (lhs_row->element_index(i)->real_item()->type() == Item::FIELD_ITEM) { Item_ident *fieldref= static_cast<Item_ident*>(lhs_row->element_index(i)); const float tmp_filt= get_single_col_filtering_effect(fieldref, filter_for_table, fields_to_ignore, rows_in_table); single_rowval_filter*= tmp_filt; } } /* If single_rowval_filter == COND_FILTER_ALLPASS, the filtering effect of this field should be ignored. If not, selectivity should not be higher than 'in_max_filter' even if there are a lot of values on the right hand side arg_count includes the left hand side item */ if (single_rowval_filter != COND_FILTER_ALLPASS) filter= min((arg_count - 1) * single_rowval_filter, in_max_filter); } else if (args[0]->real_item()->type() == Item::FIELD_ITEM) { /* This is a single-column IN predicate: "WHERE col IN (1, 2, ...)" which can be rewritten to: "WHERE col=1 OR col1=2 OR ..." The filtering effect is: #values_right_hand_side * selectivity(=) As for row values, it is assumed that no values on the right hand side are identical. */ assert(args[0]->type() == FIELD_ITEM || args[0]->type() == REF_ITEM); Item_ident *fieldref= static_cast<Item_ident*>(args[0]); const float tmp_filt= get_single_col_filtering_effect(fieldref, filter_for_table, fields_to_ignore, rows_in_table); /* If tmp_filt == COND_FILTER_ALLPASS, the filtering effect of this field should be ignored. If not, selectivity should not be higher than 'in_max_filter' even if there are a lot of values on the right hand side arg_count includes the left hand side item */ if (tmp_filt != COND_FILTER_ALLPASS) filter= min((arg_count - 1) * tmp_filt, in_max_filter); } if (negated && filter != COND_FILTER_ALLPASS) filter= 1.0f - filter; assert(filter >= 0.0f && filter <= 1.0f); return filter; } bool Item_func_in::list_contains_null() { Item **arg,**arg_end; for (arg= args + 1, arg_end= args+arg_count; arg != arg_end ; arg++) { if ((*arg)->null_inside()) return 1; } return 0; } /** Perform context analysis of an IN item tree. This function performs context analysis (name resolution) and calculates various attributes of the item tree with Item_func_in as its root. The function saves in ref the pointer to the item or to a newly created item that is considered as a replacement for the original one. @param thd reference to the global context of the query thread @param ref pointer to Item* variable where pointer to resulting "fixed" item is to be assigned @note Let T0(e)/T1(e) be the value of not_null_tables(e) when e is used on a predicate/function level. Then it's easy to show that: @verbatim T0(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei))) T1(e IN(e1,...,en)) = union(T1(e),intersection(T1(ei))) T0(e NOT IN(e1,...,en)) = union(T1(e),union(T1(ei))) T1(e NOT IN(e1,...,en)) = union(T1(e),intersection(T1(ei))) @endverbatim @retval 0 ok @retval 1 got error */ bool Item_func_in::fix_fields(THD *thd, Item **ref) { if (Item_func_opt_neg::fix_fields(thd, ref)) return true; // not_null_tables_cache == union(T1(e),union(T1(ei))) if (pred_level && negated) return false; // not_null_tables_cache = union(T1(e),intersection(T1(ei))) not_null_tables_cache= ~(table_map) 0; Item **arg_end= args + arg_count; for (Item **arg= args + 1; arg != arg_end; arg++) not_null_tables_cache&= (*arg)->not_null_tables(); not_null_tables_cache|= (*args)->not_null_tables(); return false; } void Item_func_in::fix_after_pullout(st_select_lex *parent_select, st_select_lex *removed_select) { Item_func_opt_neg::fix_after_pullout(parent_select, removed_select); // not_null_tables_cache == union(T1(e),union(T1(ei))) if (pred_level && negated) return; // not_null_tables_cache = union(T1(e),intersection(T1(ei))) not_null_tables_cache= ~(table_map) 0; Item **arg_end= args + arg_count; for (Item **arg= args + 1; arg != arg_end; arg++) not_null_tables_cache&= (*arg)->not_null_tables(); not_null_tables_cache|= (*args)->not_null_tables(); } static int srtcmp_in(CHARSET_INFO *cs, const String *x,const String *y) { return cs->coll->strnncollsp(cs, (uchar *) x->ptr(),x->length(), (uchar *) y->ptr(),y->length(), 0); } void Item_func_in::fix_length_and_dec() { Item **arg, **arg_end; bool const_itm= 1; THD *thd= current_thd; bool datetime_found= FALSE; /* TRUE <=> arguments values will be compared as DATETIMEs. */ bool compare_as_datetime= FALSE; Item *date_arg= 0; uint found_types= 0; uint type_cnt= 0, i; Item_result cmp_type= STRING_RESULT; left_result_type= args[0]->result_type(); if (!(found_types= collect_cmp_types(args, arg_count, true))) return; for (arg= args + 1, arg_end= args + arg_count; arg != arg_end ; arg++) { if (!arg[0]->const_item()) { const_itm= 0; if (arg[0]->real_item()->type() == Item::SUBSELECT_ITEM) dep_subq_in_list= true; break; } } for (i= 0; i <= (uint)DECIMAL_RESULT; i++) { if (found_types & (1U << i)) { (type_cnt)++; cmp_type= (Item_result) i; } } /* First conditions for bisection to be possible: 1. All types are similar, and 2. All expressions in <in value list> are const */ bool bisection_possible= type_cnt == 1 && // 1 const_itm; // 2 if (bisection_possible) { /* In the presence of NULLs, the correct result of evaluating this item must be UNKNOWN or FALSE. To achieve that: - If type is scalar, we can use bisection and the "have_null" boolean. - If type is ROW, we will need to scan all of <in value list> when searching, so bisection is impossible. Unless: 3. UNKNOWN and FALSE are equivalent results 4. Neither left expression nor <in value list> contain any NULL value */ if (cmp_type == ROW_RESULT && !((is_top_level_item() && !negated) || // 3 (!list_contains_null() && !args[0]->maybe_null))) // 4 bisection_possible= false; } /* JSON values will be compared as strings, and not with the JSON comparator as one might expect. Raise a warning if one of the arguments is JSON. (The degenerate case x IN (y) may get rewritten to x = y, though, and then the JSON comparator will be used if one of the arguments is JSON.) */ unsupported_json_comparison(arg_count, args, "comparison of JSON in the IN operator"); if (type_cnt == 1) { if (cmp_type == STRING_RESULT && agg_arg_charsets_for_comparison(cmp_collation, args, arg_count)) return; /* When comparing rows create the row comparator object beforehand to ease the DATETIME comparison detection procedure. */ if (cmp_type == ROW_RESULT) { cmp_item_row *cmp= 0; if (bisection_possible) { array= new in_row(thd, arg_count-1, 0); cmp= &((in_row*)array)->tmp; } else { if (!(cmp= new cmp_item_row)) return; cmp_items[ROW_RESULT]= cmp; } cmp->n= args[0]->cols(); cmp->alloc_comparators(args[0]); } /* All DATE/DATETIME fields/functions has the STRING result type. */ if (cmp_type == STRING_RESULT || cmp_type == ROW_RESULT) { uint col, cols= args[0]->cols(); for (col= 0; col < cols; col++) { bool skip_column= FALSE; /* Check that all items to be compared has the STRING result type and at least one of them is a DATE/DATETIME item. */ for (arg= args, arg_end= args + arg_count; arg != arg_end ; arg++) { Item *itm= ((cmp_type == STRING_RESULT) ? arg[0] : arg[0]->element_index(col)); if (itm->result_type() != STRING_RESULT) { skip_column= TRUE; break; } else if (itm->is_temporal_with_date()) { datetime_found= TRUE; /* Internally all DATE/DATETIME values are converted to the DATETIME type. So try to find a DATETIME item to issue correct warnings. */ if (!date_arg) date_arg= itm; else if (itm->field_type() == MYSQL_TYPE_DATETIME) { date_arg= itm; /* All arguments are already checked to have the STRING result. */ if (cmp_type == STRING_RESULT) break; } } } if (skip_column) continue; if (datetime_found) { if (cmp_type == ROW_RESULT) { cmp_item **cmp= 0; if (array) cmp= ((in_row*)array)->tmp.comparators + col; else cmp= ((cmp_item_row*)cmp_items[ROW_RESULT])->comparators + col; *cmp= new cmp_item_datetime(date_arg); /* Reset variables for the next column. */ date_arg= 0; datetime_found= FALSE; } else compare_as_datetime= TRUE; } } } } if (bisection_possible) { if (compare_as_datetime) array= new in_datetime(thd, date_arg, arg_count - 1); else { /* IN must compare INT columns and constants as int values (the same way as equality does). So we must check here if the column on the left and all the constant values on the right can be compared as integers and adjust the comparison type accordingly. */ bool datetime_as_longlong= false; if (args[0]->real_item()->type() == FIELD_ITEM && thd->lex->sql_command != SQLCOM_CREATE_VIEW && thd->lex->sql_command != SQLCOM_SHOW_CREATE && cmp_type != INT_RESULT) { Item_field *field_item= (Item_field*) (args[0]->real_item()); if (field_item->field->can_be_compared_as_longlong()) { bool all_converted= true; for (arg=args + 1, arg_end= args + arg_count; arg != arg_end ; arg++) { if (!convert_constant_item (thd, field_item, &arg[0])) all_converted= false; } if (all_converted) { cmp_type= INT_RESULT; datetime_as_longlong= field_item->is_temporal(); } } } switch (cmp_type) { case STRING_RESULT: array=new in_string(thd, arg_count-1, (qsort2_cmp) srtcmp_in, cmp_collation.collation); break; case INT_RESULT: array= datetime_as_longlong ? args[0]->field_type() == MYSQL_TYPE_TIME ? (in_vector*) new in_time_as_longlong(thd, arg_count - 1) : (in_vector*) new in_datetime_as_longlong(thd, arg_count - 1) : (in_vector*) new in_longlong(thd, arg_count - 1); break; case REAL_RESULT: array= new in_double(thd, arg_count-1); break; case ROW_RESULT: /* The row comparator was created at the beginning. */ break; case DECIMAL_RESULT: array= new in_decimal(thd, arg_count - 1); break; default: assert(0); return; } } if (!array || thd->is_fatal_error) // OOM return; uint j=0; for (uint i=1 ; i < arg_count ; i++) { array->set(j,args[i]); if (!args[i]->null_value) j++; // include this cell in the array. else { /* We don't put NULL values in array, to avoid erronous matches in bisection. */ have_null= 1; } } array->used_count= j; assert(array->used_count <= array->count); if (array->used_count < array->count) array->shrink_array(j); if (array->used_count) array->sort(); } else { if (compare_as_datetime) cmp_items[STRING_RESULT]= new cmp_item_datetime(date_arg); else { for (i= 0; i <= (uint) DECIMAL_RESULT; i++) { if (found_types & (1U << i) && !cmp_items[i]) { if ((Item_result)i == STRING_RESULT && agg_arg_charsets_for_comparison(cmp_collation, args, arg_count)) return; if (!cmp_items[i] && !(cmp_items[i]= cmp_item::get_comparator((Item_result)i, args[0], cmp_collation.collation))) return; } } } } Opt_trace_object(&thd->opt_trace).add("IN_uses_bisection", bisection_possible); /* Set cmp_context of all arguments. This prevents Item_field::equal_fields_propagator() from transforming a zerofill integer argument into a string constant. Such a change would require rebuilding cmp_itmes. */ for (arg= args + 1, arg_end= args + arg_count; arg != arg_end ; arg++) { arg[0]->cmp_context= item_cmp_type(left_result_type, arg[0]->result_type()); } max_length= 1; } void Item_func_in::print(String *str, enum_query_type query_type) { str->append('('); args[0]->print(str, query_type); if (negated) str->append(STRING_WITH_LEN(" not")); str->append(STRING_WITH_LEN(" in (")); print_args(str, 1, query_type); str->append(STRING_WITH_LEN("))")); } /* Evaluate the function and return its value. SYNOPSIS val_int() DESCRIPTION Evaluate the function and return its value. IMPLEMENTATION If the array object is defined then the value of the function is calculated by means of this array. Otherwise several cmp_item objects are used in order to do correct comparison of left expression and an expression from the values list. One cmp_item object correspond to one used comparison type. Left expression can be evaluated up to number of different used comparison types. A bit mapped variable value_added_map is used to check whether the left expression already was evaluated for a particular result type. Result types are mapped to it according to their integer values i.e. STRING_RESULT is mapped to bit 0, REAL_RESULT to bit 1, so on. RETURN Value of the function */ longlong Item_func_in::val_int() { cmp_item *in_item; assert(fixed == 1); uint value_added_map= 0; if (array) { bool tmp=array->find_item(args[0]); /* NULL on left -> UNKNOWN. Found no match, and NULL on right -> UNKNOWN. NULL on right can never give a match, as it is not stored in array. See also the 'bisection_possible' variable in fix_length_and_dec(). */ null_value=args[0]->null_value || (!tmp && have_null); return (longlong) (!null_value && tmp != negated); } if ((null_value= args[0]->real_item()->type() == NULL_ITEM)) return 0; have_null= 0; for (uint i= 1 ; i < arg_count ; i++) { if (args[i]->real_item()->type() == NULL_ITEM) { have_null= TRUE; continue; } Item_result cmp_type= item_cmp_type(left_result_type, args[i]->result_type()); in_item= cmp_items[(uint)cmp_type]; assert(in_item); if (!(value_added_map & (1U << (uint)cmp_type))) { in_item->store_value(args[0]); value_added_map|= 1U << (uint)cmp_type; } const int rc= in_item->cmp(args[i]); if (rc == FALSE) return (longlong) (!negated); have_null|= (rc == UNKNOWN); } null_value= have_null; return (longlong) (!null_value && negated); } void Item::check_deprecated_bin_op(const Item *a, const Item *b) { /* We want to warn about cases which will likely change behaviour in future versions. The conditions to emit a warning are: 1. If there's only one argument, the item should be a [VAR]BINARY argument (1) and it should be different from the hex/bit/NULL literal (2). 2. If there are two arguments, both should be [VAR]BINARY (3) and at least one of them should be different from the hex/bit/NULL literal (4) */ if (a->result_type() == STRING_RESULT && a->collation.collation == &my_charset_bin && // (1), (3) (!b || (b->result_type() == STRING_RESULT && b->collation.collation == &my_charset_bin)) && // (3) ((a->type() != Item::VARBIN_ITEM && a->type() != Item::NULL_ITEM) || // (2), (4) (b && b->type() != Item::VARBIN_ITEM && b->type() != Item::NULL_ITEM))) // (4) { push_warning_printf(current_thd, Sql_condition::SL_WARNING, ER_WARN_DEPRECATED_SYNTAX, "Bitwise operations on BINARY will change behavior" " in a future version, check the 'Bit functions'" " section in the manual."); } } longlong Item_func_bit_or::val_int() { assert(fixed == 1); ulonglong arg1= (ulonglong) args[0]->val_int(); if (args[0]->null_value) { null_value=1; /* purecov: inspected */ return 0; /* purecov: inspected */ } ulonglong arg2= (ulonglong) args[1]->val_int(); if (args[1]->null_value) { null_value=1; return 0; } null_value=0; return (longlong) (arg1 | arg2); } longlong Item_func_bit_and::val_int() { assert(fixed == 1); ulonglong arg1= (ulonglong) args[0]->val_int(); if (args[0]->null_value) { null_value=1; /* purecov: inspected */ return 0; /* purecov: inspected */ } ulonglong arg2= (ulonglong) args[1]->val_int(); if (args[1]->null_value) { null_value=1; /* purecov: inspected */ return 0; /* purecov: inspected */ } null_value=0; return (longlong) (arg1 & arg2); } Item_cond::Item_cond(THD *thd, Item_cond *item) :Item_bool_func(thd, item), abort_on_null(item->abort_on_null) { /* item->list will be copied by copy_andor_arguments() call */ } /** Contextualization for Item_cond functional items Item_cond successors use Item_cond::list instead of Item_func::args and Item_func::arg_count, so we can't itemize parse-time Item_cond objects by forwarding a contextualization process to the parent Item_func class: we need to overload this function to run a contextualization the Item_cond::list items. */ bool Item_cond::itemize(Parse_context *pc, Item **res) { if (skip_itemize(res)) return false; if (super::itemize(pc, res)) return true; List_iterator<Item> li(list); Item *item; while ((item= li++)) { if (item->itemize(pc, &item)) return true; li.replace(item); } return false; } void Item_cond::copy_andor_arguments(THD *thd, Item_cond *item) { List_iterator_fast<Item> li(item->list); while (Item *it= li++) { assert(it->real_item()); // Sanity check (no dangling 'ref') list.push_back(it->copy_andor_structure(thd)); } } bool Item_cond::fix_fields(THD *thd, Item **ref) { assert(fixed == 0); List_iterator<Item> li(list); Item *item; /* Semi-join flattening should only be performed for predicates on the AND-top-level. Disable it if this condition is not an AND. */ Disable_semijoin_flattening DSF(thd->lex->current_select(), functype() != COND_AND_FUNC); uchar buff[sizeof(char*)]; // Max local vars in function used_tables_cache= 0; const_item_cache= true; if (functype() == COND_AND_FUNC && abort_on_null) not_null_tables_cache= 0; else not_null_tables_cache= ~(table_map) 0; if (check_stack_overrun(thd, STACK_MIN_SIZE, buff)) return TRUE; // Fatal error flag is set! /* The following optimization reduces the depth of an AND-OR tree. E.g. a WHERE clause like F1 AND (F2 AND (F2 AND F4)) is parsed into a tree with the same nested structure as defined by braces. This optimization will transform such tree into AND (F1, F2, F3, F4). Trees of OR items are flattened as well: ((F1 OR F2) OR (F3 OR F4)) => OR (F1, F2, F3, F4) Items for removed AND/OR levels will dangle until the death of the entire statement. The optimization is currently prepared statements and stored procedures friendly as it doesn't allocate any memory and its effects are durable (i.e. do not depend on PS/SP arguments). */ while ((item=li++)) { while (item->type() == Item::COND_ITEM && ((Item_cond*) item)->functype() == functype() && !((Item_cond*) item)->list.is_empty()) { // Identical function li.replace(((Item_cond*) item)->list); ((Item_cond*) item)->list.empty(); item= *li.ref(); // new current item } if (abort_on_null) item->top_level_item(); // item can be substituted in fix_fields if ((!item->fixed && item->fix_fields(thd, li.ref())) || (item= *li.ref())->check_cols(1)) return TRUE; /* purecov: inspected */ used_tables_cache|= item->used_tables(); const_item_cache&= item->const_item(); if (functype() == COND_AND_FUNC && abort_on_null) not_null_tables_cache|= item->not_null_tables(); else not_null_tables_cache&= item->not_null_tables(); with_sum_func|= item->with_sum_func; with_subselect|= item->has_subquery(); with_stored_program|= item->has_stored_program(); maybe_null|= item->maybe_null; } thd->lex->current_select()->cond_count+= list.elements; fix_length_and_dec(); fixed= true; return false; } void Item_cond::fix_after_pullout(st_select_lex *parent_select, st_select_lex *removed_select) { List_iterator<Item> li(list); Item *item; used_tables_cache= get_initial_pseudo_tables(); const_item_cache= true; if (functype() == COND_AND_FUNC && abort_on_null) not_null_tables_cache= 0; else not_null_tables_cache= ~(table_map) 0; while ((item=li++)) { item->fix_after_pullout(parent_select, removed_select); used_tables_cache|= item->used_tables(); const_item_cache&= item->const_item(); if (functype() == COND_AND_FUNC && abort_on_null) not_null_tables_cache|= item->not_null_tables(); else not_null_tables_cache&= item->not_null_tables(); } } bool Item_cond::eq(const Item *item, bool binary_cmp) const { if (this == item) return true; if (item->type() != COND_ITEM) return false; const Item_cond *item_cond= down_cast<const Item_cond *>(item); if (functype() != item_cond->functype() || list.elements != item_cond->list.elements || func_name() != item_cond->func_name()) return false; // Item_cond never uses "args". Inspect "list" instead. assert(arg_count == 0 && item_cond->arg_count == 0); List_iterator_fast<Item> it1(const_cast<Item_cond *>(this)->list); List_iterator_fast<Item> it2(const_cast<Item_cond *>(item_cond)->list); Item *i; while ((i= it1++)) if (!i->eq(it2++, binary_cmp)) return false; return true; } bool Item_cond::walk(Item_processor processor, enum_walk walk, uchar *arg) { if ((walk & WALK_PREFIX) && (this->*processor)(arg)) return true; List_iterator_fast<Item> li(list); Item *item; while ((item= li++)) { if (item->walk(processor, walk, arg)) return true; } return (walk & WALK_POSTFIX) && (this->*processor)(arg); } /** Transform an Item_cond object with a transformer callback function. The function recursively applies the transform method to each member item of the condition list. If the call of the method for a member item returns a new item the old item is substituted for a new one. After this the transformer is applied to the root node of the Item_cond object. @param transformer the transformer callback function to be applied to the nodes of the tree of the object @param arg parameter to be passed to the transformer @return Item returned as the result of transformation of the root node */ Item *Item_cond::transform(Item_transformer transformer, uchar *arg) { assert(!current_thd->stmt_arena->is_stmt_prepare()); List_iterator<Item> li(list); Item *item; while ((item= li++)) { Item *new_item= item->transform(transformer, arg); if (!new_item) return 0; /* THD::change_item_tree() should be called only if the tree was really transformed, i.e. when a new item has been created. Otherwise we'll be allocating a lot of unnecessary memory for change records at each execution. */ if (new_item != item) current_thd->change_item_tree(li.ref(), new_item); } return Item_func::transform(transformer, arg); } /** Compile Item_cond object with a processor and a transformer callback functions. First the function applies the analyzer to the root node of the Item_func object. Then if the analyzer succeeeds (returns TRUE) the function recursively applies the compile method to member item of the condition list. If the call of the method for a member item returns a new item the old item is substituted for a new one. After this the transformer is applied to the root node of the Item_cond object. @param analyzer the analyzer callback function to be applied to the nodes of the tree of the object @param[in,out] arg_p parameter to be passed to the analyzer @param transformer the transformer callback function to be applied to the nodes of the tree of the object @param arg_t parameter to be passed to the transformer @return Item returned as result of transformation of the node, the same item if no transformation applied, or NULL if transformation caused an error. */ Item *Item_cond::compile(Item_analyzer analyzer, uchar **arg_p, Item_transformer transformer, uchar *arg_t) { if (!(this->*analyzer)(arg_p)) return this; List_iterator<Item> li(list); Item *item; while ((item= li++)) { /* The same parameter value of arg_p must be passed to analyze any argument of the condition formula. */ uchar *arg_v= *arg_p; Item *new_item= item->compile(analyzer, &arg_v, transformer, arg_t); if (new_item == NULL) return NULL; if (new_item != item) current_thd->change_item_tree(li.ref(), new_item); } // strange to call transform(): each argument will thus have the transformer // called twice on it (in compile() above and Item_func::transform below)?? return Item_func::transform(transformer, arg_t); } void Item_cond::traverse_cond(Cond_traverser traverser, void *arg, traverse_order order) { List_iterator<Item> li(list); Item *item; switch(order) { case(PREFIX): (*traverser)(this, arg); while ((item= li++)) { item->traverse_cond(traverser, arg, order); } (*traverser)(NULL, arg); break; case(POSTFIX): while ((item= li++)) { item->traverse_cond(traverser, arg, order); } (*traverser)(this, arg); } } /** Move SUM items out from item tree and replace with reference. The split is done to get an unique item for each SUM function so that we can easily find and calculate them. (Calculation done by update_sum_func() and copy_sum_funcs() in sql_select.cc) @param thd Thread handler @param ref_pointer_array Pointer to array of reference fields @param fields All fields in select @note This function is run on all expression (SELECT list, WHERE, HAVING etc) that have or refer (HAVING) to a SUM expression. */ void Item_cond::split_sum_func(THD *thd, Ref_ptr_array ref_pointer_array, List<Item> &fields) { List_iterator<Item> li(list); Item *item; while ((item= li++)) item->split_sum_func2(thd, ref_pointer_array, fields, li.ref(), TRUE); } void Item_cond::update_used_tables() { List_iterator_fast<Item> li(list); Item *item; used_tables_cache=0; const_item_cache=1; with_subselect= false; with_stored_program= false; while ((item=li++)) { item->update_used_tables(); used_tables_cache|= item->used_tables(); const_item_cache&= item->const_item(); with_subselect|= item->has_subquery(); with_stored_program|= item->has_stored_program(); } } void Item_cond::print(String *str, enum_query_type query_type) { str->append('('); List_iterator_fast<Item> li(list); Item *item; if ((item=li++)) item->print(str, query_type); while ((item=li++)) { str->append(' '); str->append(func_name()); str->append(' '); item->print(str, query_type); } str->append(')'); } void Item_cond::neg_arguments(THD *thd) { List_iterator<Item> li(list); Item *item; while ((item= li++)) /* Apply not transformation to the arguments */ { Item *new_item= item->neg_transformer(thd); if (!new_item) { if (!(new_item= new Item_func_not(item))) return; // Fatal OEM error } (void) li.replace(new_item); } } float Item_cond_and::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { if (!(used_tables() & filter_for_table)) return COND_FILTER_ALLPASS; // No conditions below this apply to the table float filter= COND_FILTER_ALLPASS; List_iterator<Item> it(list); Item *item; /* Calculated as "Conjunction of independent events": P(A and B ...) = P(A) * P(B) * ... */ while ((item= it++)) filter*= item->get_filtering_effect(filter_for_table, read_tables, fields_to_ignore, rows_in_table); return filter; } /** Evaluation of AND(expr, expr, expr ...). @note abort_if_null is set for AND expressions for which we don't care if the result is NULL or 0. This is set for: - WHERE clause - HAVING clause - IF(expression) @retval 1 If all expressions are true @retval 0 If all expressions are false or if we find a NULL expression and 'abort_on_null' is set. @retval NULL if all expression are either 1 or NULL */ longlong Item_cond_and::val_int() { assert(fixed == 1); List_iterator_fast<Item> li(list); Item *item; null_value= 0; while ((item=li++)) { if (!item->val_bool()) { if (abort_on_null || !(null_value= item->null_value)) return 0; // return FALSE } } return null_value ? 0 : 1; } float Item_cond_or::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { if (!(used_tables() & filter_for_table)) return COND_FILTER_ALLPASS; // No conditions below this apply to the table float filter= 0.0f; List_iterator<Item> it(list); Item *item; while ((item= it++)) { const float cur_filter= item->get_filtering_effect(filter_for_table, read_tables, fields_to_ignore, rows_in_table); /* Calculated as "Disjunction of independent events": P(A or B) = P(A) + P(B) - P(A) * P(B) If any of the ORed predicates has a filtering effect of COND_FILTER_ALLPASS, the end result is COND_FILTER_ALLPASS. This is as expected since COND_FILTER_ALLPASS means that a) the predicate has no filtering effect at all, or b) the predicate's filtering effect is unknown. In both cases, the only meaningful result is for OR to produce COND_FILTER_ALLPASS. */ filter= filter + cur_filter - (filter * cur_filter); } return filter; } longlong Item_cond_or::val_int() { assert(fixed == 1); List_iterator_fast<Item> li(list); Item *item; null_value=0; while ((item=li++)) { if (item->val_bool()) { null_value=0; return 1; } if (item->null_value) null_value=1; } return 0; } /** Create an AND expression from two expressions. @param a expression or NULL @param b expression. @param org_item Don't modify a if a == *org_item. If a == NULL, org_item is set to point at b, to ensure that future calls will not modify b. @note This will not modify item pointed to by org_item or b The idea is that one can call this in a loop and create and 'and' over all items without modifying any of the original items. @retval NULL Error @retval Item */ Item *and_expressions(Item *a, Item *b, Item **org_item) { if (!a) return (*org_item= b); if (a == *org_item) { Item_cond *res; if ((res= new Item_cond_and(a, b))) { res->set_used_tables(a->used_tables() | b->used_tables()); res->set_not_null_tables(a->not_null_tables() | b->not_null_tables()); } return res; } if (((Item_cond_and*) a)->add(b)) return 0; ((Item_cond_and*) a)->set_used_tables(a->used_tables() | b->used_tables()); ((Item_cond_and*) a)->set_not_null_tables(a->not_null_tables() | b->not_null_tables()); return a; } float Item_func_isnull::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); } longlong Item_func_isnull::val_int() { assert(fixed == 1); /* Handle optimization if the argument can't be null This has to be here because of the test in update_used_tables(). */ if (const_item_cache) return cached_value; return args[0]->is_null() ? 1: 0; } longlong Item_is_not_null_test::val_int() { assert(fixed == 1); DBUG_ENTER("Item_is_not_null_test::val_int"); if (!used_tables_cache && !with_subselect && !with_stored_program) { /* TODO: Currently this branch never executes, since used_tables_cache is never equal to 0 -- it always contains RAND_TABLE_BIT, see get_initial_pseudo_tables(). */ owner->was_null|= (!cached_value); DBUG_PRINT("info", ("cached: %ld", (long) cached_value)); DBUG_RETURN(cached_value); } if (args[0]->is_null()) { DBUG_PRINT("info", ("null")); owner->was_null|= 1; DBUG_RETURN(0); } else DBUG_RETURN(1); } /** Optimize case of not_null_column IS NULL. */ void Item_is_not_null_test::update_used_tables() { const table_map initial_pseudo_tables= get_initial_pseudo_tables(); used_tables_cache= initial_pseudo_tables; if (!args[0]->maybe_null) { cached_value= 1; return; } args[0]->update_used_tables(); with_subselect= args[0]->has_subquery(); with_stored_program= args[0]->has_stored_program(); used_tables_cache|= args[0]->used_tables(); if (used_tables_cache == initial_pseudo_tables && !with_subselect && !with_stored_program) /* Remember if the value is always NULL or never NULL */ cached_value= !args[0]->is_null(); } float Item_func_isnotnull::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return 1.0f - fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); } longlong Item_func_isnotnull::val_int() { assert(fixed == 1); return args[0]->is_null() ? 0 : 1; } void Item_func_isnotnull::print(String *str, enum_query_type query_type) { str->append('('); args[0]->print(str, query_type); str->append(STRING_WITH_LEN(" is not null)")); } float Item_func_like::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; /* Filtering effect is similar to that of BETWEEN because * "col like abc%" is similar to "col between abc and abd" The same applies for 'abc_' * "col like %abc" can be seen as "reverse(col) like cba%"" (see above) * "col like "abc%def%..." is also similar Now we're left with "col like <string_no_wildcards>" which should have filtering effect like equality, but it would be costly to look through the whole string searching for wildcards and since LIKE is mostly used for wildcards this isn't checked. */ return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_BETWEEN); } bool Item_func_like::itemize(Parse_context *pc, Item **res) { if (skip_itemize(res)) return false; if (super::itemize(pc, res) || (escape_item != NULL && escape_item->itemize(pc, &escape_item))) return true; if (escape_item == NULL) { THD *thd= pc->thd; escape_item= ((thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) ? new (pc->mem_root) Item_string("", 0, &my_charset_latin1) : new (pc->mem_root) Item_string("\\", 1, &my_charset_latin1)); } return escape_item == NULL; } longlong Item_func_like::val_int() { assert(fixed == 1); if (!escape_evaluated && eval_escape_clause(current_thd)) return error_int(); String* res = args[0]->val_str(&cmp.value1); if (args[0]->null_value) { null_value=1; return 0; } String* res2 = args[1]->val_str(&cmp.value2); if (args[1]->null_value) { null_value=1; return 0; } null_value=0; if (can_do_bm) return bm_matches(res->ptr(), res->length()) ? 1 : 0; return my_wildcmp(cmp.cmp_collation.collation, res->ptr(),res->ptr()+res->length(), res2->ptr(),res2->ptr()+res2->length(), escape,wild_one,wild_many) ? 0 : 1; } /** We can optimize a where if first character isn't a wildcard */ Item_func::optimize_type Item_func_like::select_optimize() const { if (!args[1]->const_item()) return OPTIMIZE_NONE; String* res2= args[1]->val_str((String *)&cmp.value2); if (!res2) return OPTIMIZE_NONE; if (!res2->length()) // Can optimize empty wildcard: column LIKE '' return OPTIMIZE_OP; assert(res2->ptr()); char first= res2->ptr()[0]; return (first == wild_many || first == wild_one) ? OPTIMIZE_NONE : OPTIMIZE_OP; } bool Item_func_like::fix_fields(THD *thd, Item **ref) { assert(fixed == 0); Disable_semijoin_flattening DSF(thd->lex->current_select(), true); if (Item_bool_func2::fix_fields(thd, ref) || escape_item->fix_fields(thd, &escape_item) || escape_item->check_cols(1)) return true; if (!escape_item->const_during_execution()) { my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE"); return true; } if (escape_item->const_item()) { /* We need to know the escape character in order to apply Boyer-Moore. Since it is const, it is safe to evaluate it now at the resolution stage. */ if (eval_escape_clause(thd)) return true; /* We could also do boyer-more for non-const items, but as we would have to recompute the tables for each row it's not worth it. */ if (args[1]->const_item() && !use_strnxfrm(collation.collation) && !(specialflag & SPECIAL_NO_NEW_FUNC)) { String* res2 = args[1]->val_str(&cmp.value2); if (thd->is_error()) return true; if (!res2) return false; // Null argument const size_t len = res2->length(); const char* first = res2->ptr(); const char* last = first + len - 1; /* Minimum length pattern before Boyer-Moore is used for SELECT "text" LIKE "%pattern%" including the two wildcards in class Item_func_like. */ const size_t min_bm_pattern_len= 5; if (len > min_bm_pattern_len && *first == wild_many && *last == wild_many) { const char* tmp = first + 1; for (; *tmp != wild_many && *tmp != wild_one && *tmp != escape; tmp++) ; can_do_bm= (tmp == last) && !use_mb(args[0]->collation.collation); } if (can_do_bm) { pattern_len = (int) len - 2; pattern = thd->strmake(first + 1, pattern_len); DBUG_PRINT("info", ("Initializing pattern: '%s'", first)); int *suff = (int*) thd->alloc((int) (sizeof(int)* ((pattern_len + 1)*2+ alphabet_size))); bmGs = suff + pattern_len + 1; bmBc = bmGs + pattern_len + 1; bm_compute_good_suffix_shifts(suff); bm_compute_bad_character_shifts(); DBUG_PRINT("info",("done")); } } } return false; } void Item_func_like::cleanup() { can_do_bm= false; escape_evaluated= false; Item_bool_func2::cleanup(); } /** Evaluate the expression in the escape clause. @param thd thread handler @return false on success, true on failure */ bool Item_func_like::eval_escape_clause(THD *thd) { assert(!escape_evaluated); String buf; String *escape_str= escape_item->val_str(&buf); if (escape_str) { const char *escape_str_ptr= escape_str->ptr(); if (escape_used_in_parsing && ( (((thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES) && escape_str->numchars() != 1) || escape_str->numchars() > 1))) { my_error(ER_WRONG_ARGUMENTS,MYF(0),"ESCAPE"); return true; } if (use_mb(cmp.cmp_collation.collation)) { const CHARSET_INFO *cs= escape_str->charset(); my_wc_t wc; int rc= cs->cset->mb_wc(cs, &wc, (const uchar*) escape_str_ptr, (const uchar*) escape_str_ptr + escape_str->length()); escape= (int) (rc > 0 ? wc : '\\'); } else { /* In the case of 8bit character set, we pass native code instead of Unicode code as "escape" argument. Convert to "cs" if charset of escape differs. */ const CHARSET_INFO *cs= cmp.cmp_collation.collation; size_t unused; if (escape_str->needs_conversion(escape_str->length(), escape_str->charset(), cs, &unused)) { char ch; uint errors; size_t cnvlen= copy_and_convert(&ch, 1, cs, escape_str_ptr, escape_str->length(), escape_str->charset(), &errors); escape= cnvlen ? ch : '\\'; } else escape= escape_str_ptr ? *escape_str_ptr : '\\'; } } else escape= '\\'; escape_evaluated= true; return false; } /** @brief Compile regular expression. @param[in] send_error send error message if any. @details Make necessary character set conversion then compile regular expression passed in the args[1]. @retval 0 success. @retval 1 error occurred. @retval -1 given null regular expression. */ int Item_func_regex::regcomp(bool send_error) { char buff[MAX_FIELD_WIDTH]; String tmp(buff,sizeof(buff),&my_charset_bin); String *res= args[1]->val_str(&tmp); int error; if (args[1]->null_value) return -1; if (regex_compiled) { if (!stringcmp(res, &prev_regexp)) return 0; prev_regexp.copy(*res); my_regfree(&preg); regex_compiled= 0; } if (cmp_collation.collation != regex_lib_charset) { /* Convert UCS2 strings to UTF8 */ uint dummy_errors; if (conv.copy(res->ptr(), res->length(), res->charset(), regex_lib_charset, &dummy_errors)) return 1; res= &conv; } if ((error= my_regcomp(&preg, res->c_ptr_safe(), regex_lib_flags, regex_lib_charset))) { if (send_error) { (void) my_regerror(error, &preg, buff, sizeof(buff)); my_error(ER_REGEXP_ERROR, MYF(0), buff); } return 1; } regex_compiled= 1; return 0; } bool Item_func_regex::fix_fields(THD *thd, Item **ref) { assert(fixed == 0); Disable_semijoin_flattening DSF(thd->lex->current_select(), true); if ((!args[0]->fixed && args[0]->fix_fields(thd, args)) || args[0]->check_cols(1) || (!args[1]->fixed && args[1]->fix_fields(thd, args + 1)) || args[1]->check_cols(1)) return TRUE; /* purecov: inspected */ with_sum_func=args[0]->with_sum_func || args[1]->with_sum_func; with_subselect= args[0]->has_subquery() || args[1]->has_subquery(); with_stored_program= args[0]->has_stored_program() || args[1]->has_stored_program(); max_length= 1; decimals= 0; if (agg_arg_charsets_for_comparison(cmp_collation, args, 2)) return TRUE; regex_lib_flags= (cmp_collation.collation->state & (MY_CS_BINSORT | MY_CS_CSSORT)) ? MY_REG_EXTENDED | MY_REG_NOSUB : MY_REG_EXTENDED | MY_REG_NOSUB | MY_REG_ICASE; /* If the case of UCS2 and other non-ASCII character sets, we will convert patterns and strings to UTF8. */ regex_lib_charset= (cmp_collation.collation->mbminlen > 1) ? &my_charset_utf8_general_ci : cmp_collation.collation; used_tables_cache=args[0]->used_tables() | args[1]->used_tables(); not_null_tables_cache= (args[0]->not_null_tables() | args[1]->not_null_tables()); const_item_cache=args[0]->const_item() && args[1]->const_item(); if (!regex_compiled && args[1]->const_item()) { int comp_res= regcomp(TRUE); if (comp_res == -1) { // Will always return NULL maybe_null=1; fixed= 1; return FALSE; } else if (comp_res) return TRUE; regex_is_const= 1; maybe_null= args[0]->maybe_null; } else maybe_null=1; fixed= 1; return FALSE; } longlong Item_func_regex::val_int() { assert(fixed == 1); char buff[MAX_FIELD_WIDTH]; String tmp(buff,sizeof(buff),&my_charset_bin); String *res= args[0]->val_str(&tmp); if ((null_value= (args[0]->null_value || (!regex_is_const && regcomp(FALSE))))) return 0; if (cmp_collation.collation != regex_lib_charset) { /* Convert UCS2 strings to UTF8 */ uint dummy_errors; if (conv.copy(res->ptr(), res->length(), res->charset(), regex_lib_charset, &dummy_errors)) { null_value= 1; return 0; } res= &conv; } return my_regexec(&preg,res->c_ptr_safe(),0,(my_regmatch_t*) 0,0) ? 0 : 1; } void Item_func_regex::cleanup() { DBUG_ENTER("Item_func_regex::cleanup"); Item_bool_func::cleanup(); if (regex_compiled) { my_regfree(&preg); regex_compiled=0; prev_regexp.length(0); } DBUG_VOID_RETURN; } #define likeconv(cs,A) (uchar) (cs)->sort_order[(uchar) (A)] /** Precomputation dependent only on pattern_len. */ void Item_func_like::bm_compute_suffixes(int *suff) { const int plm1 = pattern_len - 1; int f = 0; int g = plm1; int *const splm1 = suff + plm1; const CHARSET_INFO *cs= cmp.cmp_collation.collation; *splm1 = pattern_len; if (!cs->sort_order) { int i; for (i = pattern_len - 2; i >= 0; i--) { int tmp = *(splm1 + i - f); if (g < i && tmp < i - g) suff[i] = tmp; else { if (i < g) g = i; // g = min(i, g) f = i; while (g >= 0 && pattern[g] == pattern[g + plm1 - f]) g--; suff[i] = f - g; } } } else { int i; for (i = pattern_len - 2; 0 <= i; --i) { int tmp = *(splm1 + i - f); if (g < i && tmp < i - g) suff[i] = tmp; else { if (i < g) g = i; // g = min(i, g) f = i; while (g >= 0 && likeconv(cs, pattern[g]) == likeconv(cs, pattern[g + plm1 - f])) g--; suff[i] = f - g; } } } } /** Precomputation dependent only on pattern_len. */ void Item_func_like::bm_compute_good_suffix_shifts(int *suff) { bm_compute_suffixes(suff); int *end = bmGs + pattern_len; int *k; for (k = bmGs; k < end; k++) *k = pattern_len; int tmp; int i; int j = 0; const int plm1 = pattern_len - 1; for (i = plm1; i > -1; i--) { if (suff[i] == i + 1) { for (tmp = plm1 - i; j < tmp; j++) { int *tmp2 = bmGs + j; if (*tmp2 == pattern_len) *tmp2 = tmp; } } } int *tmp2; for (tmp = plm1 - i; j < tmp; j++) { tmp2 = bmGs + j; if (*tmp2 == pattern_len) *tmp2 = tmp; } tmp2 = bmGs + plm1; for (i = 0; i <= pattern_len - 2; i++) *(tmp2 - suff[i]) = plm1 - i; } /** Precomputation dependent on pattern_len. */ void Item_func_like::bm_compute_bad_character_shifts() { int *i; int *end = bmBc + alphabet_size; int j; const int plm1 = pattern_len - 1; const CHARSET_INFO *cs= cmp.cmp_collation.collation; for (i = bmBc; i < end; i++) *i = pattern_len; if (!cs->sort_order) { for (j = 0; j < plm1; j++) bmBc[(uchar) pattern[j]] = plm1 - j; } else { for (j = 0; j < plm1; j++) bmBc[likeconv(cs,pattern[j])] = plm1 - j; } } /** Search for pattern in text. @return returns true/false for match/no match */ bool Item_func_like::bm_matches(const char* text, size_t text_len) const { int bcShift; int shift = pattern_len; int j = 0; const CHARSET_INFO *cs= cmp.cmp_collation.collation; const int plm1= pattern_len - 1; const int tlmpl= text_len - pattern_len; /* Searching */ if (!cs->sort_order) { while (j <= tlmpl) { int i; for (i= plm1; (i >= 0) && (pattern[i] == text[i + j]) ;--i) {} if (i < 0) return true; else { bcShift= bmBc[(uchar) text[i + j]] - plm1 + i; shift= max(bcShift, bmGs[i]); } j+= shift; } return false; } else { while (j <= tlmpl) { int i; for (i= plm1; (i >= 0) && likeconv(cs,pattern[i]) == likeconv(cs,text[i + j]); --i) {} if (i < 0) return true; else { bcShift= bmBc[likeconv(cs, text[i + j])] - plm1 + i; shift= max(bcShift, bmGs[i]); } j+= shift; } return false; } } float Item_func_xor::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { assert(arg_count == 2); const float filter0= args[0]->get_filtering_effect(filter_for_table, read_tables, fields_to_ignore, rows_in_table); if (filter0 == COND_FILTER_ALLPASS) return COND_FILTER_ALLPASS; const float filter1= args[1]->get_filtering_effect(filter_for_table, read_tables, fields_to_ignore, rows_in_table); if (filter1 == COND_FILTER_ALLPASS) return COND_FILTER_ALLPASS; /* Calculated as "exactly one of independent events": P(A and not B) + P(B and not A) = P(A) + P(B) - 2 * P(A) * P(B) */ return filter0 + filter1 - (2 * filter0 * filter1); } /** Make a logical XOR of the arguments. If either operator is NULL, return NULL. @todo (low priority) Change this to be optimized as: @n A XOR B -> (A) == 1 AND (B) <> 1) OR (A <> 1 AND (B) == 1) @n To be able to do this, we would however first have to extend the MySQL range optimizer to handle OR better. @note As we don't do any index optimization on XOR this is not going to be very fast to use. */ longlong Item_func_xor::val_int() { assert(fixed == 1); int result= 0; null_value= false; for (uint i= 0; i < arg_count; i++) { result^= (args[i]->val_int() != 0); if (args[i]->null_value) { null_value= true; return 0; } } return result; } /** Apply NOT transformation to the item and return a new one. Transform the item using next rules: @verbatim a AND b AND ... -> NOT(a) OR NOT(b) OR ... a OR b OR ... -> NOT(a) AND NOT(b) AND ... NOT(a) -> a a = b -> a != b a != b -> a = b a < b -> a >= b a >= b -> a < b a > b -> a <= b a <= b -> a > b IS NULL(a) -> IS NOT NULL(a) IS NOT NULL(a) -> IS NULL(a) @endverbatim @param thd thread handler @return New item or NULL if we cannot apply NOT transformation (see Item::neg_transformer()). */ Item *Item_func_not::neg_transformer(THD *thd) /* NOT(x) -> x */ { return args[0]; } Item *Item_bool_rowready_func2::neg_transformer(THD *thd) { Item *item= negated_item(); return item; } /** XOR can be negated by negating one of the operands: NOT (a XOR b) => (NOT a) XOR b => a XOR (NOT b) @param thd Thread handle @return New negated item */ Item *Item_func_xor::neg_transformer(THD *thd) { Item *neg_operand; Item_func_xor *new_item; if ((neg_operand= args[0]->neg_transformer(thd))) // args[0] has neg_tranformer new_item= new(thd->mem_root) Item_func_xor(neg_operand, args[1]); else if ((neg_operand= args[1]->neg_transformer(thd))) // args[1] has neg_tranformer new_item= new(thd->mem_root) Item_func_xor(args[0], neg_operand); else { neg_operand= new(thd->mem_root) Item_func_not(args[0]); new_item= new(thd->mem_root) Item_func_xor(neg_operand, args[1]); } return new_item; } /** a IS NULL -> a IS NOT NULL. */ Item *Item_func_isnull::neg_transformer(THD *thd) { Item *item= new Item_func_isnotnull(args[0]); return item; } /** a IS NOT NULL -> a IS NULL. */ Item *Item_func_isnotnull::neg_transformer(THD *thd) { Item *item= new Item_func_isnull(args[0]); return item; } Item *Item_cond_and::neg_transformer(THD *thd) /* NOT(a AND b AND ...) -> */ /* NOT a OR NOT b OR ... */ { neg_arguments(thd); Item *item= new Item_cond_or(list); return item; } Item *Item_cond_or::neg_transformer(THD *thd) /* NOT(a OR b OR ...) -> */ /* NOT a AND NOT b AND ... */ { neg_arguments(thd); Item *item= new Item_cond_and(list); return item; } Item *Item_func_nop_all::neg_transformer(THD *thd) { /* "NOT (e $cmp$ ANY (SELECT ...)) -> e $rev_cmp$" ALL (SELECT ...) */ Item_func_not_all *new_item= new Item_func_not_all(args[0]); Item_allany_subselect *allany= (Item_allany_subselect*)args[0]; allany->func= allany->func_creator(FALSE); allany->all= !allany->all; allany->upper_item= new_item; return new_item; } Item *Item_func_not_all::neg_transformer(THD *thd) { /* "NOT (e $cmp$ ALL (SELECT ...)) -> e $rev_cmp$" ANY (SELECT ...) */ Item_func_nop_all *new_item= new Item_func_nop_all(args[0]); Item_allany_subselect *allany= (Item_allany_subselect*)args[0]; allany->all= !allany->all; allany->func= allany->func_creator(TRUE); allany->upper_item= new_item; return new_item; } Item *Item_func_eq::negated_item() /* a = b -> a != b */ { return new Item_func_ne(args[0], args[1]); } Item *Item_func_ne::negated_item() /* a != b -> a = b */ { return new Item_func_eq(args[0], args[1]); } Item *Item_func_lt::negated_item() /* a < b -> a >= b */ { return new Item_func_ge(args[0], args[1]); } Item *Item_func_ge::negated_item() /* a >= b -> a < b */ { return new Item_func_lt(args[0], args[1]); } Item *Item_func_gt::negated_item() /* a > b -> a <= b */ { return new Item_func_le(args[0], args[1]); } Item *Item_func_le::negated_item() /* a <= b -> a > b */ { return new Item_func_gt(args[0], args[1]); } /** just fake method, should never be called. */ Item *Item_bool_rowready_func2::negated_item() { assert(0); return 0; } Item_equal::Item_equal(Item_field *f1, Item_field *f2) : Item_bool_func(), const_item(0), eval_item(0), cond_false(0), compare_as_dates(FALSE) { const_item_cache= 0; fields.push_back(f1); fields.push_back(f2); } Item_equal::Item_equal(Item *c, Item_field *f) : Item_bool_func(), eval_item(0), cond_false(0) { const_item_cache= 0; fields.push_back(f); const_item= c; compare_as_dates= f->is_temporal_with_date(); } Item_equal::Item_equal(Item_equal *item_equal) : Item_bool_func(), eval_item(0), cond_false(0) { const_item_cache= 0; List_iterator_fast<Item_field> li(item_equal->fields); Item_field *item; while ((item= li++)) { fields.push_back(item); } const_item= item_equal->const_item; compare_as_dates= item_equal->compare_as_dates; cond_false= item_equal->cond_false; } bool Item_equal::compare_const(THD *thd, Item *c) { if (compare_as_dates) { cmp.set_datetime_cmp_func(this, &c, &const_item); cond_false= cmp.compare(); } else { Item_func_eq *func= new Item_func_eq(c, const_item); if (func == NULL) return true; if (func->set_cmp_func()) return true; func->quick_fix_field(); cond_false= !func->val_int(); } if (thd->is_error()) return true; if (cond_false) const_item_cache= 1; return false; } bool Item_equal::add(THD *thd, Item *c, Item_field *f) { if (cond_false) return false; if (!const_item) { assert(f); const_item= c; compare_as_dates= f->is_temporal_with_date(); return false; } return compare_const(thd, c); } bool Item_equal::add(THD *thd, Item *c) { if (cond_false) return false; if (!const_item) { const_item= c; return false; } return compare_const(thd, c); } void Item_equal::add(Item_field *f) { fields.push_back(f); } uint Item_equal::members() { return fields.elements; } /** Check whether a field is referred in the multiple equality. The function checks whether field is occurred in the Item_equal object . @param field field whose occurrence is to be checked @retval 1 if nultiple equality contains a reference to field @retval 0 otherwise */ bool Item_equal::contains(Field *field) { List_iterator_fast<Item_field> it(fields); Item_field *item; while ((item= it++)) { if (field->eq(item->field)) return 1; } return 0; } /** Join members of another Item_equal object. The function actually merges two multiple equalities. After this operation the Item_equal object additionally contains the field items of another item of the type Item_equal. If the optional constant items are not equal the cond_false flag is set to 1. @param thd thread handler @param item multiple equality whose members are to be joined @returns false if success, true if error */ bool Item_equal::merge(THD *thd, Item_equal *item) { fields.concat(&item->fields); Item *c= item->const_item; if (c) { /* The flag cond_false will be set to 1 after this, if the multiple equality already contains a constant and its value is not equal to the value of c. */ if (add(thd, c)) return true; } cond_false|= item->cond_false; return false; } /** Order field items in multiple equality according to a sorting criteria. The function perform ordering of the field items in the Item_equal object according to the criteria determined by the cmp callback parameter. If cmp(item_field1,item_field2,arg)<0 than item_field1 must be placed after item_fiel2. The function sorts field items by the exchange sort algorithm. The list of field items is looked through and whenever two neighboring members follow in a wrong order they are swapped. This is performed again and again until we get all members in a right order. @param compare function to compare field item @param arg context extra parameter for the cmp function */ void Item_equal::sort(Item_field_cmpfunc compare, void *arg) { fields.sort((Node_cmp_func)compare, arg); } /** Check appearance of new constant items in the multiple equality object. The function checks appearance of new constant items among the members of multiple equalities. Each new constant item is compared with the designated constant item if there is any in the multiple equality. If there is none the first new constant item becomes designated. @param thd thread handler @returns false if success, true if error */ bool Item_equal::update_const(THD *thd) { List_iterator<Item_field> it(fields); Item *item; while ((item= it++)) { if (item->const_item() && /* Don't propagate constant status of outer-joined column. Such a constant status here is a result of: a) empty outer-joined table: in this case such a column has a value of NULL; but at the same time other arguments of Item_equal don't have to be NULLs and the value of the whole multiple equivalence expression doesn't have to be NULL or FALSE because of the outer join nature; or b) outer-joined table contains only 1 row: the result of this column is equal to a row field value *or* NULL. Both values are inacceptable as Item_equal constants. */ !item->is_outer_field()) { it.remove(); if (add(thd, item)) return true; } } return false; } bool Item_equal::fix_fields(THD *thd, Item **ref) { List_iterator_fast<Item_field> li(fields); Item *item; not_null_tables_cache= used_tables_cache= 0; const_item_cache= 0; while ((item= li++)) { used_tables_cache|= item->used_tables(); not_null_tables_cache|= item->not_null_tables(); maybe_null|= item->maybe_null; } fix_length_and_dec(); fixed= 1; return 0; } /** Get filtering effect for multiple equalities, i.e. "tx.col = value_1 = ... = value_n" where value_i may be a constant, a column etc. The multiple equality only contributes to the filtering effect for 'filter_for_table' if a) A column in 'filter_for_table' is referred to b) at least one value_i is a constant or a column in a table already read If this multiple equality refers to more than one column in 'filter_for_table', the predicates on all these fields will contribute to the filtering effect. */ float Item_equal::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { // This predicate does not refer to a column in 'filter_for_table' if (!(used_tables() & filter_for_table)) return COND_FILTER_ALLPASS; float filter= COND_FILTER_ALLPASS; /* Keep track of whether or not a usable value that is either a constant or a column in an already read table has been found. */ bool found_comparable= false; // Is there a constant that this multiple equality is equal to? if (const_item) found_comparable= true; List_iterator<Item_field> it(fields); Item_field *cur_field; /* Calculate filtering effect for all applicable fields. If this item has multiple fields from 'filter_for_table', each of these fields will contribute to the filtering effect. */ while ((cur_field= it++)) { if (cur_field->used_tables() & read_tables) { // cur_field is a field in a table earlier in the join sequence. found_comparable= true; } else if (cur_field->used_tables() == filter_for_table) { if (bitmap_is_set(fields_to_ignore, cur_field->field->field_index)) { /* cur_field is a field in 'filter_for_table', but it is a field which already contributes to the filtering effect. Its value can still be used as a constant if another column in the same table is referred to in this multiple equality. */ found_comparable= true; } else { /* cur_field is a field in 'filter_for_table', and it's not one of the fields that must be ignored */ float cur_filter= cur_field->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); // Use index statistics if available for this field if (!cur_field->field->key_start.is_clear_all()) { // cur_field is indexed - there may be statistics for it. const TABLE *tab= cur_field->field->table; for (uint j= 0; j < tab->s->keys; j++) { if (cur_field->field->key_start.is_set(j) && tab->key_info[j].has_records_per_key(0)) { cur_filter= static_cast<float>(tab->key_info[j].records_per_key(0) / rows_in_table); break; } } /* Since rec_per_key and rows_per_table are calculated at different times, their values may not be in synch and thus it is possible that cur_filter is greater than 1.0 if rec_per_key is outdated. Force the filter to 1.0 in such cases. */ if (cur_filter >= 1.0) cur_filter= 1.0f; } filter*= cur_filter; } } } return found_comparable ? filter : COND_FILTER_ALLPASS; } void Item_equal::update_used_tables() { List_iterator_fast<Item_field> li(fields); Item *item; not_null_tables_cache= used_tables_cache= 0; if ((const_item_cache= cond_false)) return; with_subselect= false; with_stored_program= false; while ((item=li++)) { item->update_used_tables(); used_tables_cache|= item->used_tables(); not_null_tables_cache|= item->not_null_tables(); /* see commentary at Item_equal::update_const() */ const_item_cache&= item->const_item() && !item->is_outer_field(); with_subselect|= item->has_subquery(); with_stored_program|= item->has_stored_program(); } } longlong Item_equal::val_int() { Item_field *item_field; if (cond_false) return 0; List_iterator_fast<Item_field> it(fields); Item *item= const_item ? const_item : it++; eval_item->store_value(item); if ((null_value= item->null_value)) return 0; while ((item_field= it++)) { /* Skip fields of non-const tables. They haven't been read yet */ if (item_field->field->table->const_table) { const int rc= eval_item->cmp(item_field); if ((rc == TRUE) || (null_value= (rc == UNKNOWN))) return 0; } } return 1; } void Item_equal::fix_length_and_dec() { Item *item= get_first(); eval_item= cmp_item::get_comparator(item->result_type(), item, item->collation.collation); } bool Item_equal::walk(Item_processor processor, enum_walk walk, uchar *arg) { if ((walk & WALK_PREFIX) && (this->*processor)(arg)) return true; List_iterator_fast<Item_field> it(fields); Item *item; while ((item= it++)) { if (item->walk(processor, walk, arg)) return true; } return (walk & WALK_POSTFIX) && (this->*processor)(arg); } Item *Item_equal::transform(Item_transformer transformer, uchar *arg) { assert(!current_thd->stmt_arena->is_stmt_prepare()); List_iterator<Item_field> it(fields); Item *item; while ((item= it++)) { Item *new_item= item->transform(transformer, arg); if (!new_item) return 0; /* THD::change_item_tree() should be called only if the tree was really transformed, i.e. when a new item has been created. Otherwise we'll be allocating a lot of unnecessary memory for change records at each execution. */ if (new_item != item) current_thd->change_item_tree((Item **) it.ref(), new_item); } return Item_func::transform(transformer, arg); } void Item_equal::print(String *str, enum_query_type query_type) { str->append(func_name()); str->append('('); List_iterator_fast<Item_field> it(fields); Item *item; if (const_item) const_item->print(str, query_type); else { item= it++; item->print(str, query_type); } while ((item= it++)) { str->append(','); str->append(' '); item->print(str, query_type); } str->append(')'); } longlong Item_func_trig_cond::val_int() { if (trig_var == NULL) { assert(m_join != NULL && m_idx >= 0); switch(trig_type) { case IS_NOT_NULL_COMPL: trig_var= &m_join->qep_tab[m_idx].not_null_compl; break; case FOUND_MATCH: trig_var= &m_join->qep_tab[m_idx].found; break; default: assert(false); /* purecov: inspected */ return 0; } } return *trig_var ? args[0]->val_int() : 1; } void Item_func_trig_cond::print(String *str, enum_query_type query_type) { /* Print: <if>(<property><(optional list of source tables)>, condition, TRUE) which means: if a certain property (<property>) is true, then return the value of <condition>, else return TRUE. If source tables are present, they are the owner of the property. */ str->append(func_name()); str->append("("); switch(trig_type) { case IS_NOT_NULL_COMPL: str->append("is_not_null_compl"); break; case FOUND_MATCH: str->append("found_match"); break; case OUTER_FIELD_IS_NOT_NULL: str->append("outer_field_is_not_null"); break; default: assert(0); } if (m_join != NULL) { /* Item printing is done at various stages of optimization, so there can be a JOIN_TAB or a QEP_TAB. */ TABLE *table, *last_inner_table; plan_idx last_inner; if (m_join->qep_tab) { QEP_TAB *qep_tab= &m_join->qep_tab[m_idx]; table= qep_tab->table(); last_inner= qep_tab->last_inner(); last_inner_table= m_join->qep_tab[last_inner].table(); } else { JOIN_TAB *join_tab= m_join->best_ref[m_idx]; table= join_tab->table(); last_inner= join_tab->last_inner(); last_inner_table= m_join->best_ref[last_inner]->table(); } str->append("("); str->append(table->alias); if (last_inner != m_idx) { /* case of t1 LEFT JOIN (t2,t3,...): print range of inner tables */ str->append(".."); str->append(last_inner_table->alias); } str->append(")"); } str->append(", "); args[0]->print(str, query_type); str->append(", true)"); } /** Get item that can be substituted for the supplied item. @param field field item to get substitution field for, which must be present within the multiple equality itself. @retval Found substitution item in the multiple equality. @details Get the first item of multiple equality that can be substituted for the given field item. In order to make semijoin materialization strategy work correctly we can't propagate equal fields between a materialized semijoin and the outer query (or any other semijoin) unconditionally. Thus the field is returned according to the following rules: 1) If the given field belongs to a materialized semijoin then the first field in the multiple equality which belongs to the same semijoin is returned. 2) If the given field doesn't belong to a materialized semijoin then the first field in the multiple equality is returned. */ Item_field* Item_equal::get_subst_item(const Item_field *field) { assert(field != NULL); const JOIN_TAB *field_tab= field->field->table->reginfo.join_tab; /* field_tab is NULL if this function was not called from JOIN::optimize() but from e.g. mysql_delete() or mysql_update(). In these cases there is only one table and no semijoin */ if (field_tab && sj_is_materialize_strategy(field_tab->get_sj_strategy())) { /* It's a field from a materialized semijoin. We can substitute it only with a field from the same semijoin. Example: suppose we have a join_tab order: ot1 ot2 <subquery> ot3 SJM(it1 it2 it3) <subquery> is the temporary table that is materialized from the join of it1, it2 and it3. and equality ot2.col = <subquery>.col = it1.col = it2.col If we're looking for best substitute for 'it2.col', we must pick it1.col and not ot2.col. it2.col is evaluated while performing materialization, when the outer tables are not available in the execution. Note that subquery materialization does not have the same problem: even though IN->EXISTS has injected equalities involving outer query's expressions, it has wrapped those expressions in variants of Item_ref, never Item_field, so they can be part of an Item_equal only if they are constant (in which case there is no problem with choosing them below); @see check_simple_equality(). */ List_iterator<Item_field> it(fields); Item_field *item; plan_idx first= field_tab->first_sj_inner(), last= field_tab->last_sj_inner(); while ((item= it++)) { plan_idx idx= item->field->table->reginfo.join_tab->idx(); if (idx >= first && idx <= last) return item; } } else { /* The field is not in a materialized semijoin nest. We can return the first field in the multiple equality. Example: suppose we have a join_tab order with MaterializeLookup: ot1 ot2 <subquery> SJM(it1 it2) Here we should always pick the first field in the multiple equality, as this will be present before all other dependent fields. Example: suppose we have a join_tab order with MaterializeScan: <subquery> ot1 ot2 SJM(it1 it2) and equality <subquery>.col = ot2.col = ot1.col = it2.col. When looking for best substitute for ot2.col, we should pick <subquery>.col, because column values from the inner materialized tables are copied to the temporary table <subquery>, and when we run the scan, field values are read into this table's field buffers. */ return fields.head(); } assert(FALSE); // Should never get here. return NULL; } /** Transform an Item_equal object after having added a table that represents a materialized semi-join. @details If the multiple equality represented by the Item_equal object contains a field from the subquery that was used to create the materialized table, add the corresponding key field from the materialized table to the multiple equality. @see JOIN::update_equalities_for_sjm() for the reason. */ Item* Item_equal::equality_substitution_transformer(uchar *arg) { TABLE_LIST *sj_nest= reinterpret_cast<TABLE_LIST *>(arg); List_iterator<Item_field> it(fields); List<Item_field> added_fields; Item_field *item; // Iterate over the fields in the multiple equality while ((item= it++)) { // Skip fields that do not come from materialized subqueries const JOIN_TAB *tab= item->field->table->reginfo.join_tab; if (!tab || !sj_is_materialize_strategy(tab->get_sj_strategy())) continue; // Iterate over the fields selected from the subquery List_iterator<Item> mit(sj_nest->nested_join->sj_inner_exprs); Item *existing; uint fieldno= 0; while ((existing= mit++)) { if (existing->real_item()->eq(item, false)) added_fields.push_back(sj_nest->nested_join->sjm.mat_fields[fieldno]); fieldno++; } } fields.concat(&added_fields); return this; } /** Replace arg of Item_func_eq object after having added a table that represents a materialized semi-join. @details The right argument of an injected semi-join equality (which comes from the select list of the subquery) is replaced with the corresponding column from the materialized temporary table, if the left and right arguments are not from the same semi-join nest. @see JOIN::update_equalities_for_sjm() for why this is needed. */ Item* Item_func_eq::equality_substitution_transformer(uchar *arg) { TABLE_LIST *sj_nest= reinterpret_cast<TABLE_LIST *>(arg); // Iterate over the fields selected from the subquery List_iterator<Item> mit(sj_nest->nested_join->sj_inner_exprs); Item *existing; uint fieldno= 0; while ((existing= mit++)) { if (existing->real_item()->eq(args[1], false) && (args[0]->used_tables() & ~sj_nest->sj_inner_tables)) current_thd->change_item_tree(args+1, sj_nest->nested_join->sjm.mat_fields[fieldno]); fieldno++; } return this; } float Item_func_eq::get_filtering_effect(table_map filter_for_table, table_map read_tables, const MY_BITMAP *fields_to_ignore, double rows_in_table) { const Item_field* fld= contributes_to_filter(read_tables, filter_for_table, fields_to_ignore); if (!fld) return COND_FILTER_ALLPASS; return fld->get_cond_filter_default_probability(rows_in_table, COND_FILTER_EQUALITY); } bool Item_func_any_value::aggregate_check_group(uchar *arg) { Group_check *gc= reinterpret_cast<Group_check *>(arg); if (gc->is_stopped(this)) return false; gc->stop_at(this); return false; } bool Item_func_any_value::aggregate_check_distinct(uchar *arg) { Distinct_check *dc= reinterpret_cast<Distinct_check *>(arg); if (dc->is_stopped(this)) return false; dc->stop_at(this); return false; }