403Webshell
Server IP : 104.21.38.3  /  Your IP : 162.158.108.160
Web Server : Apache
System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64
User : www ( 1000)
PHP Version : 7.4.33
Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/share/rspamd/lualib/redis_scripts/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/share/rspamd/lualib/redis_scripts/bayes_classify.lua
-- Lua script to perform bayes classification
-- This script accepts the following parameters:
-- key1 - prefix for bayes tokens (e.g. for per-user classification)
-- key2 - set of tokens encoded in messagepack array of strings

local prefix = KEYS[1]
local output_spam = {}
local output_ham = {}

local learned_ham = tonumber(redis.call('HGET', prefix, 'learns_ham')) or 0
local learned_spam = tonumber(redis.call('HGET', prefix, 'learns_spam')) or 0

-- Output is a set of pairs (token_index, token_count), tokens that are not
-- found are not filled.
-- This optimisation will save a lot of space for sparse tokens, and in Bayes that assumption is normally held

if learned_ham > 0 and learned_spam > 0 then
  local input_tokens = cmsgpack.unpack(KEYS[2])
  for i, token in ipairs(input_tokens) do
    local token_data = redis.call('HMGET', token, 'H', 'S')

    if token_data then
      local ham_count = token_data[1]
      local spam_count = token_data[2]

      if ham_count then
        table.insert(output_ham, { i, tonumber(ham_count) })
      end

      if spam_count then
        table.insert(output_spam, { i, tonumber(spam_count) })
      end
    end
  end
end

return { learned_ham, learned_spam, output_ham, output_spam }

Youez - 2016 - github.com/yon3zu
LinuXploit