Server IP : 104.21.38.3 / Your IP : 162.158.170.159 Web Server : Apache System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64 User : www ( 1000) PHP Version : 7.4.33 Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /usr/share/rspamd/lualib/redis_scripts/ |
Upload File : |
-- Lua script to perform bayes learning -- This script accepts the following parameters: -- key1 - prefix for bayes tokens (e.g. for per-user classification) -- key2 - boolean is_spam -- key3 - string symbol -- key4 - boolean is_unlearn -- key5 - set of tokens encoded in messagepack array of strings -- key6 - set of text tokens (if any) encoded in messagepack array of strings (size must be twice of `KEYS[5]`) local prefix = KEYS[1] local is_spam = KEYS[2] == 'true' and true or false local symbol = KEYS[3] local is_unlearn = KEYS[4] == 'true' and true or false local input_tokens = cmsgpack.unpack(KEYS[5]) local text_tokens if KEYS[6] then text_tokens = cmsgpack.unpack(KEYS[6]) end local hash_key = is_spam and 'S' or 'H' local learned_key = is_spam and 'learns_spam' or 'learns_ham' redis.call('SADD', symbol .. '_keys', prefix) redis.call('HSET', prefix, 'version', '2') -- new schema redis.call('HINCRBY', prefix, learned_key, is_unlearn and -1 or 1) -- increase or decrease learned count for i, token in ipairs(input_tokens) do redis.call('HINCRBY', token, hash_key, 1) if text_tokens then local tok1 = text_tokens[i * 2 - 1] local tok2 = text_tokens[i * 2] if tok1 then if tok2 then redis.call('HSET', token, 'tokens', string.format('%s:%s', tok1, tok2)) else redis.call('HSET', token, 'tokens', tok1) end redis.call('ZINCRBY', prefix .. '_z', is_unlearn and -1 or 1, token) end end end