403Webshell
Server IP : 104.21.38.3  /  Your IP : 162.158.170.217
Web Server : Apache
System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64
User : www ( 1000)
PHP Version : 7.4.33
Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /www/server/mysql/src/boost/boost_1_59_0/boost/geometry/algorithms/detail/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /www/server/mysql/src/boost/boost_1_59_0/boost/geometry/algorithms/detail/thomas_inverse.hpp
// Boost.Geometry

// Copyright (c) 2015 Oracle and/or its affiliates.

// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle

// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_THOMAS_INVERSE_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_THOMAS_INVERSE_HPP


#include <boost/math/constants/constants.hpp>

#include <boost/geometry/core/radius.hpp>
#include <boost/geometry/core/srs.hpp>

#include <boost/geometry/util/condition.hpp>
#include <boost/geometry/util/math.hpp>

#include <boost/geometry/algorithms/detail/flattening.hpp>
#include <boost/geometry/algorithms/detail/result_inverse.hpp>

namespace boost { namespace geometry { namespace detail
{

/*!
\brief The solution of the inverse problem of geodesics on latlong coordinates,
       Forsyth-Andoyer-Lambert type approximation with second order terms.
\author See
    - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965
      http://www.dtic.mil/docs/citations/AD0627893
    - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970
      http://www.dtic.mil/docs/citations/AD703541
*/
template <typename CT, bool EnableDistance, bool EnableAzimuth>
struct thomas_inverse
{
    typedef result_inverse<CT> result_type;

    template <typename T1, typename T2, typename Spheroid>
    static inline result_type apply(T1 const& lon1,
                                    T1 const& lat1,
                                    T2 const& lon2,
                                    T2 const& lat2,
                                    Spheroid const& spheroid)
    {
        result_type result;

        // coordinates in radians

        if ( math::equals(lon1, lon2)
          && math::equals(lat1, lat2) )
        {
            result.set(CT(0), CT(0));
            return result;
        }

        CT const f = detail::flattening<CT>(spheroid);
        CT const one_minus_f = CT(1) - f;

//        CT const tan_theta1 = one_minus_f * tan(lat1);
//        CT const tan_theta2 = one_minus_f * tan(lat2);
//        CT const theta1 = atan(tan_theta1);
//        CT const theta2 = atan(tan_theta2);

        CT const pi_half = math::pi<CT>() / CT(2);
        CT const theta1 = math::equals(lat1, pi_half) ? lat1 :
                          math::equals(lat1, -pi_half) ? lat1 :
                          atan(one_minus_f * tan(lat1));
        CT const theta2 = math::equals(lat2, pi_half) ? lat2 :
                          math::equals(lat2, -pi_half) ? lat2 :
                          atan(one_minus_f * tan(lat2));

        CT const theta_m = (theta1 + theta2) / CT(2);
        CT const d_theta_m = (theta2 - theta1) / CT(2);
        CT const d_lambda = lon2 - lon1;
        CT const d_lambda_m = d_lambda / CT(2);

        CT const sin_theta_m = sin(theta_m);
        CT const cos_theta_m = cos(theta_m);
        CT const sin_d_theta_m = sin(d_theta_m);
        CT const cos_d_theta_m = cos(d_theta_m);
        CT const sin2_theta_m = math::sqr(sin_theta_m);
        CT const cos2_theta_m = math::sqr(cos_theta_m);
        CT const sin2_d_theta_m = math::sqr(sin_d_theta_m);
        CT const cos2_d_theta_m = math::sqr(cos_d_theta_m);
        CT const sin_d_lambda_m = sin(d_lambda_m);
        CT const sin2_d_lambda_m = math::sqr(sin_d_lambda_m);

        CT const H = cos2_theta_m - sin2_d_theta_m;
        CT const L = sin2_d_theta_m + H * sin2_d_lambda_m;
        CT const cos_d = CT(1) - CT(2) * L;
        CT const d = acos(cos_d);
        CT const sin_d = sin(d);

        CT const one_minus_L = CT(1) - L;

        if ( math::equals(sin_d, CT(0))
          || math::equals(L, CT(0))
          || math::equals(one_minus_L, CT(0)) )
        {
            result.set(CT(0), CT(0));
            return result;
        }

        CT const U = CT(2) * sin2_theta_m * cos2_d_theta_m / one_minus_L;
        CT const V = CT(2) * sin2_d_theta_m * cos2_theta_m / L;
        CT const X = U + V;
        CT const Y = U - V;
        CT const T = d / sin_d;
        //CT const D = CT(4) * math::sqr(T);
        //CT const E = CT(2) * cos_d;
        //CT const A = D * E;
        //CT const B = CT(2) * D;
        //CT const C = T - (A - E) / CT(2);
    
        if ( BOOST_GEOMETRY_CONDITION(EnableDistance) )
        {
            //CT const n1 = X * (A + C*X);
            //CT const n2 = Y * (B + E*Y);
            //CT const n3 = D*X*Y;

            //CT const f_sqr = math::sqr(f);
            //CT const f_sqr_per_64 = f_sqr / CT(64);

            CT const delta1d = f * (T*X-Y) / CT(4);
            //CT const delta2d = f_sqr_per_64 * (n1 - n2 + n3);

            CT const a = get_radius<0>(spheroid);

            result.distance = a * sin_d * (T - delta1d);
            //double S2 = a * sin_d * (T - delta1d + delta2d);
        }
        else
        {
            result.distance = CT(0);
        }
    
        if ( BOOST_GEOMETRY_CONDITION(EnableAzimuth) )
        {
            // NOTE: if both cos_latX == 0 then below we'd have 0 * INF
            // it's a situation when the endpoints are on the poles +-90 deg
            // in this case the azimuth could either be 0 or +-pi
            // but above always 0 is returned

            // may also be used to calculate distance21
            //CT const D = CT(4) * math::sqr(T);
            CT const E = CT(2) * cos_d;
            //CT const A = D * E;
            //CT const B = CT(2) * D;
            // may also be used to calculate distance21
            CT const f_sqr = math::sqr(f);
            CT const f_sqr_per_64 = f_sqr / CT(64);

            CT const F = CT(2)*Y-E*(CT(4)-X);
            //CT const M = CT(32)*T-(CT(20)*T-A)*X-(B+CT(4))*Y;
            CT const G = f*T/CT(2) + f_sqr_per_64;
            CT const tan_d_lambda = tan(d_lambda);
            CT const Q = -(F*G*tan_d_lambda) / CT(4);

            CT const d_lambda_p = (d_lambda + Q) / CT(2);
            CT const tan_d_lambda_p = tan(d_lambda_p);

            CT const v = atan2(cos_d_theta_m, sin_theta_m * tan_d_lambda_p);
            CT const u = atan2(-sin_d_theta_m, cos_theta_m * tan_d_lambda_p);

            CT const pi = math::pi<CT>();
            CT alpha1 = v + u;
            if ( alpha1 > pi )
            {
                alpha1 -= CT(2) * pi;
            }

            result.azimuth = alpha1;
        }
        else
        {
            result.azimuth = CT(0);
        }

        return result;
    }
};

}}} // namespace boost::geometry::detail


#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_THOMAS_INVERSE_HPP

Youez - 2016 - github.com/yon3zu
LinuXploit