Server IP : 104.21.38.3 / Your IP : 172.70.208.51 Web Server : Apache System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64 User : www ( 1000) PHP Version : 7.4.33 Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /www/server/mysql/src/boost/boost_1_59_0/boost/random/ |
Upload File : |
/* boost random/gamma_distribution.hpp header file * * Copyright Jens Maurer 2002 * Copyright Steven Watanabe 2010 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ * */ #ifndef BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP #define BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP #include <boost/config/no_tr1/cmath.hpp> #include <istream> #include <iosfwd> #include <boost/assert.hpp> #include <boost/limits.hpp> #include <boost/static_assert.hpp> #include <boost/random/detail/config.hpp> #include <boost/random/exponential_distribution.hpp> namespace boost { namespace random { // The algorithm is taken from Knuth /** * The gamma distribution is a continuous distribution with two * parameters alpha and beta. It produces values > 0. * * It has * \f$\displaystyle p(x) = x^{\alpha-1}\frac{e^{-x/\beta}}{\beta^\alpha\Gamma(\alpha)}\f$. */ template<class RealType = double> class gamma_distribution { public: typedef RealType input_type; typedef RealType result_type; class param_type { public: typedef gamma_distribution distribution_type; /** * Constructs a @c param_type object from the "alpha" and "beta" * parameters. * * Requires: alpha > 0 && beta > 0 */ param_type(const RealType& alpha_arg = RealType(1.0), const RealType& beta_arg = RealType(1.0)) : _alpha(alpha_arg), _beta(beta_arg) { } /** Returns the "alpha" parameter of the distribution. */ RealType alpha() const { return _alpha; } /** Returns the "beta" parameter of the distribution. */ RealType beta() const { return _beta; } #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS /** Writes the parameters to a @c std::ostream. */ template<class CharT, class Traits> friend std::basic_ostream<CharT, Traits>& operator<<(std::basic_ostream<CharT, Traits>& os, const param_type& parm) { os << parm._alpha << ' ' << parm._beta; return os; } /** Reads the parameters from a @c std::istream. */ template<class CharT, class Traits> friend std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& is, param_type& parm) { is >> parm._alpha >> std::ws >> parm._beta; return is; } #endif /** Returns true if the two sets of parameters are the same. */ friend bool operator==(const param_type& lhs, const param_type& rhs) { return lhs._alpha == rhs._alpha && lhs._beta == rhs._beta; } /** Returns true if the two sets fo parameters are different. */ friend bool operator!=(const param_type& lhs, const param_type& rhs) { return !(lhs == rhs); } private: RealType _alpha; RealType _beta; }; #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer); #endif /** * Creates a new gamma_distribution with parameters "alpha" and "beta". * * Requires: alpha > 0 && beta > 0 */ explicit gamma_distribution(const result_type& alpha_arg = result_type(1.0), const result_type& beta_arg = result_type(1.0)) : _exp(result_type(1)), _alpha(alpha_arg), _beta(beta_arg) { BOOST_ASSERT(_alpha > result_type(0)); BOOST_ASSERT(_beta > result_type(0)); init(); } /** Constructs a @c gamma_distribution from its parameters. */ explicit gamma_distribution(const param_type& parm) : _exp(result_type(1)), _alpha(parm.alpha()), _beta(parm.beta()) { init(); } // compiler-generated copy ctor and assignment operator are fine /** Returns the "alpha" paramter of the distribution. */ RealType alpha() const { return _alpha; } /** Returns the "beta" parameter of the distribution. */ RealType beta() const { return _beta; } /** Returns the smallest value that the distribution can produce. */ RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; } /* Returns the largest value that the distribution can produce. */ RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return (std::numeric_limits<RealType>::infinity)(); } /** Returns the parameters of the distribution. */ param_type param() const { return param_type(_alpha, _beta); } /** Sets the parameters of the distribution. */ void param(const param_type& parm) { _alpha = parm.alpha(); _beta = parm.beta(); init(); } /** * Effects: Subsequent uses of the distribution do not depend * on values produced by any engine prior to invoking reset. */ void reset() { _exp.reset(); } /** * Returns a random variate distributed according to * the gamma distribution. */ template<class Engine> result_type operator()(Engine& eng) { #ifndef BOOST_NO_STDC_NAMESPACE // allow for Koenig lookup using std::tan; using std::sqrt; using std::exp; using std::log; using std::pow; #endif if(_alpha == result_type(1)) { return _exp(eng) * _beta; } else if(_alpha > result_type(1)) { // Can we have a boost::mathconst please? const result_type pi = result_type(3.14159265358979323846); for(;;) { result_type y = tan(pi * uniform_01<RealType>()(eng)); result_type x = sqrt(result_type(2)*_alpha-result_type(1))*y + _alpha-result_type(1); if(x <= result_type(0)) continue; if(uniform_01<RealType>()(eng) > (result_type(1)+y*y) * exp((_alpha-result_type(1)) *log(x/(_alpha-result_type(1))) - sqrt(result_type(2)*_alpha -result_type(1))*y)) continue; return x * _beta; } } else /* alpha < 1.0 */ { for(;;) { result_type u = uniform_01<RealType>()(eng); result_type y = _exp(eng); result_type x, q; if(u < _p) { x = exp(-y/_alpha); q = _p*exp(-x); } else { x = result_type(1)+y; q = _p + (result_type(1)-_p) * pow(x,_alpha-result_type(1)); } if(u >= q) continue; return x * _beta; } } } template<class URNG> RealType operator()(URNG& urng, const param_type& parm) const { return gamma_distribution(parm)(urng); } #ifndef BOOST_RANDOM_NO_STREAM_OPERATORS /** Writes a @c gamma_distribution to a @c std::ostream. */ template<class CharT, class Traits> friend std::basic_ostream<CharT,Traits>& operator<<(std::basic_ostream<CharT,Traits>& os, const gamma_distribution& gd) { os << gd.param(); return os; } /** Reads a @c gamma_distribution from a @c std::istream. */ template<class CharT, class Traits> friend std::basic_istream<CharT,Traits>& operator>>(std::basic_istream<CharT,Traits>& is, gamma_distribution& gd) { gd.read(is); return is; } #endif /** * Returns true if the two distributions will produce identical * sequences of random variates given equal generators. */ friend bool operator==(const gamma_distribution& lhs, const gamma_distribution& rhs) { return lhs._alpha == rhs._alpha && lhs._beta == rhs._beta && lhs._exp == rhs._exp; } /** * Returns true if the two distributions can produce different * sequences of random variates, given equal generators. */ friend bool operator!=(const gamma_distribution& lhs, const gamma_distribution& rhs) { return !(lhs == rhs); } private: /// \cond hide_private_members template<class CharT, class Traits> void read(std::basic_istream<CharT, Traits>& is) { param_type parm; if(is >> parm) { param(parm); } } void init() { #ifndef BOOST_NO_STDC_NAMESPACE // allow for Koenig lookup using std::exp; #endif _p = exp(result_type(1)) / (_alpha + exp(result_type(1))); } /// \endcond exponential_distribution<RealType> _exp; result_type _alpha; result_type _beta; // some data precomputed from the parameters result_type _p; }; } // namespace random using random::gamma_distribution; } // namespace boost #endif // BOOST_RANDOM_GAMMA_DISTRIBUTION_HPP