403Webshell
Server IP : 104.21.38.3  /  Your IP : 172.71.82.108
Web Server : Apache
System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64
User : www ( 1000)
PHP Version : 7.4.33
Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /www/server/mysql/src/storage/innobase/include/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /www/server/mysql/src/storage/innobase/include/dict0mem.h
/*****************************************************************************

Copyright (c) 1996, 2023, Oracle and/or its affiliates.
Copyright (c) 2012, Facebook Inc.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.

This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation.  The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License, version 2.0, for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA

*****************************************************************************/

/**************************************************//**
@file include/dict0mem.h
Data dictionary memory object creation

Created 1/8/1996 Heikki Tuuri
*******************************************************/

#ifndef dict0mem_h
#define dict0mem_h

#include "univ.i"
#include "dict0types.h"
#include "data0type.h"
#include "mem0mem.h"
#include "row0types.h"
#include "rem0types.h"
#include "btr0types.h"
#ifndef UNIV_HOTBACKUP
# include "lock0types.h"
# include "que0types.h"
# include "sync0rw.h"
#endif /* !UNIV_HOTBACKUP */
#include "ut0mem.h"
#include "ut0rnd.h"
#include "ut0byte.h"
#include "hash0hash.h"
#include "trx0types.h"
#include "fts0fts.h"
#include "buf0buf.h"
#include "gis0type.h"
#include "os0once.h"
#include "ut0new.h"

#include <set>
#include <algorithm>
#include <iterator>

/* Forward declaration. */
struct ib_rbt_t;

/** Type flags of an index: OR'ing of the flags is allowed to define a
combination of types */
/* @{ */
#define DICT_CLUSTERED	1	/*!< clustered index; for other than
				auto-generated clustered indexes,
				also DICT_UNIQUE will be set */
#define DICT_UNIQUE	2	/*!< unique index */
#define	DICT_IBUF	8	/*!< insert buffer tree */
#define	DICT_CORRUPT	16	/*!< bit to store the corrupted flag
				in SYS_INDEXES.TYPE */
#define	DICT_FTS	32	/* FTS index; can't be combined with the
				other flags */
#define	DICT_SPATIAL	64	/* SPATIAL index; can't be combined with the
				other flags */
#define	DICT_VIRTUAL	128	/* Index on Virtual column */

#define	DICT_IT_BITS	8	/*!< number of bits used for
				SYS_INDEXES.TYPE */
/* @} */

#if 0 /* not implemented, retained for history */
/** Types for a table object */
#define DICT_TABLE_ORDINARY		1 /*!< ordinary table */
#define	DICT_TABLE_CLUSTER_MEMBER	2
#define	DICT_TABLE_CLUSTER		3 /* this means that the table is
					  really a cluster definition */
#endif

/* Table and tablespace flags are generally not used for the Antelope file
format except for the low order bit, which is used differently depending on
where the flags are stored.

==================== Low order flags bit =========================
                    | REDUNDANT | COMPACT | COMPRESSED and DYNAMIC
SYS_TABLES.TYPE     |     1     |    1    |     1
dict_table_t::flags |     0     |    1    |     1
FSP_SPACE_FLAGS     |     0     |    0    |     1
fil_space_t::flags  |     0     |    0    |     1

Before the 5.1 plugin, SYS_TABLES.TYPE was always DICT_TABLE_ORDINARY (1)
and the tablespace flags field was always 0. In the 5.1 plugin, these fields
were repurposed to identify compressed and dynamic row formats.

The following types and constants describe the flags found in dict_table_t
and SYS_TABLES.TYPE.  Similar flags found in fil_space_t and FSP_SPACE_FLAGS
are described in fsp0fsp.h. */

/* @{ */
/** dict_table_t::flags bit 0 is equal to 0 if the row format = Redundant */
#define DICT_TF_REDUNDANT		0	/*!< Redundant row format. */
/** dict_table_t::flags bit 0 is equal to 1 if the row format = Compact */
#define DICT_TF_COMPACT			1	/*!< Compact row format. */

/** This bitmask is used in SYS_TABLES.N_COLS to set and test whether
the Compact page format is used, i.e ROW_FORMAT != REDUNDANT */
#define DICT_N_COLS_COMPACT	0x80000000UL

/** Width of the COMPACT flag */
#define DICT_TF_WIDTH_COMPACT		1

/** Width of the ZIP_SSIZE flag */
#define DICT_TF_WIDTH_ZIP_SSIZE		4

/** Width of the ATOMIC_BLOBS flag.  The Antelope file formats broke up
BLOB and TEXT fields, storing the first 768 bytes in the clustered index.
Barracuda row formats store the whole blob or text field off-page atomically.
Secondary indexes are created from this external data using row_ext_t
to cache the BLOB prefixes. */
#define DICT_TF_WIDTH_ATOMIC_BLOBS	1

/** If a table is created with the MYSQL option DATA DIRECTORY and
innodb-file-per-table, an older engine will not be able to find that table.
This flag prevents older engines from attempting to open the table and
allows InnoDB to update_create_info() accordingly. */
#define DICT_TF_WIDTH_DATA_DIR		1

/** Width of the SHARED tablespace flag.
It is used to identify tables that exist inside a shared general tablespace.
If a table is created with the TABLESPACE=tsname option, an older engine will
not be able to find that table. This flag prevents older engines from attempting
to open the table and allows InnoDB to quickly find the tablespace. */

#define DICT_TF_WIDTH_SHARED_SPACE	1

/** Width of all the currently known table flags */
#define DICT_TF_BITS	(DICT_TF_WIDTH_COMPACT			\
			+ DICT_TF_WIDTH_ZIP_SSIZE		\
			+ DICT_TF_WIDTH_ATOMIC_BLOBS		\
			+ DICT_TF_WIDTH_DATA_DIR		\
			+ DICT_TF_WIDTH_SHARED_SPACE)

/** A mask of all the known/used bits in table flags */
#define DICT_TF_BIT_MASK	(~(~0 << DICT_TF_BITS))

/** Zero relative shift position of the COMPACT field */
#define DICT_TF_POS_COMPACT		0
/** Zero relative shift position of the ZIP_SSIZE field */
#define DICT_TF_POS_ZIP_SSIZE		(DICT_TF_POS_COMPACT		\
					+ DICT_TF_WIDTH_COMPACT)
/** Zero relative shift position of the ATOMIC_BLOBS field */
#define DICT_TF_POS_ATOMIC_BLOBS	(DICT_TF_POS_ZIP_SSIZE		\
					+ DICT_TF_WIDTH_ZIP_SSIZE)
/** Zero relative shift position of the DATA_DIR field */
#define DICT_TF_POS_DATA_DIR		(DICT_TF_POS_ATOMIC_BLOBS	\
					+ DICT_TF_WIDTH_ATOMIC_BLOBS)
/** Zero relative shift position of the SHARED TABLESPACE field */
#define DICT_TF_POS_SHARED_SPACE	(DICT_TF_POS_DATA_DIR		\
					+ DICT_TF_WIDTH_DATA_DIR)
/** Zero relative shift position of the start of the UNUSED bits */
#define DICT_TF_POS_UNUSED		(DICT_TF_POS_SHARED_SPACE	\
					+ DICT_TF_WIDTH_SHARED_SPACE)

/** Bit mask of the COMPACT field */
#define DICT_TF_MASK_COMPACT				\
		((~(~0U << DICT_TF_WIDTH_COMPACT))	\
		<< DICT_TF_POS_COMPACT)
/** Bit mask of the ZIP_SSIZE field */
#define DICT_TF_MASK_ZIP_SSIZE				\
		((~(~0U << DICT_TF_WIDTH_ZIP_SSIZE))	\
		<< DICT_TF_POS_ZIP_SSIZE)
/** Bit mask of the ATOMIC_BLOBS field */
#define DICT_TF_MASK_ATOMIC_BLOBS			\
		((~(~0U << DICT_TF_WIDTH_ATOMIC_BLOBS))	\
		<< DICT_TF_POS_ATOMIC_BLOBS)
/** Bit mask of the DATA_DIR field */
#define DICT_TF_MASK_DATA_DIR				\
		((~(~0U << DICT_TF_WIDTH_DATA_DIR))	\
		<< DICT_TF_POS_DATA_DIR)
/** Bit mask of the SHARED_SPACE field */
#define DICT_TF_MASK_SHARED_SPACE			\
		((~(~0U << DICT_TF_WIDTH_SHARED_SPACE))	\
		<< DICT_TF_POS_SHARED_SPACE)

/** Return the value of the COMPACT field */
#define DICT_TF_GET_COMPACT(flags)			\
		((flags & DICT_TF_MASK_COMPACT)		\
		>> DICT_TF_POS_COMPACT)
/** Return the value of the ZIP_SSIZE field */
#define DICT_TF_GET_ZIP_SSIZE(flags)			\
		((flags & DICT_TF_MASK_ZIP_SSIZE)	\
		>> DICT_TF_POS_ZIP_SSIZE)
/** Return the value of the ATOMIC_BLOBS field */
#define DICT_TF_HAS_ATOMIC_BLOBS(flags)			\
		((flags & DICT_TF_MASK_ATOMIC_BLOBS)	\
		>> DICT_TF_POS_ATOMIC_BLOBS)
/** Return the value of the DATA_DIR field */
#define DICT_TF_HAS_DATA_DIR(flags)			\
		((flags & DICT_TF_MASK_DATA_DIR)	\
		>> DICT_TF_POS_DATA_DIR)
/** Return the value of the SHARED_SPACE field */
#define DICT_TF_HAS_SHARED_SPACE(flags)			\
		((flags & DICT_TF_MASK_SHARED_SPACE)	\
		>> DICT_TF_POS_SHARED_SPACE)
/** Return the contents of the UNUSED bits */
#define DICT_TF_GET_UNUSED(flags)			\
		(flags >> DICT_TF_POS_UNUSED)
/* @} */

/** @brief Table Flags set number 2.

These flags will be stored in SYS_TABLES.MIX_LEN.  All unused flags
will be written as 0.  The column may contain garbage for tables
created with old versions of InnoDB that only implemented
ROW_FORMAT=REDUNDANT.  InnoDB engines do not check these flags
for unknown bits in order to protect backward incompatibility. */
/* @{ */
/** Total number of bits in table->flags2. */
#define DICT_TF2_BITS			9
#define DICT_TF2_UNUSED_BIT_MASK	(~0U << DICT_TF2_BITS)
#define DICT_TF2_BIT_MASK		~DICT_TF2_UNUSED_BIT_MASK

/** TEMPORARY; TRUE for tables from CREATE TEMPORARY TABLE. */
#define DICT_TF2_TEMPORARY		1

/** The table has an internal defined DOC ID column */
#define DICT_TF2_FTS_HAS_DOC_ID		2

/** The table has an FTS index */
#define DICT_TF2_FTS			4

/** Need to add Doc ID column for FTS index build.
This is a transient bit for index build */
#define DICT_TF2_FTS_ADD_DOC_ID		8

/** This bit is used during table creation to indicate that it will
use its own tablespace instead of the system tablespace. */
#define DICT_TF2_USE_FILE_PER_TABLE	16

/** Set when we discard/detach the tablespace */
#define DICT_TF2_DISCARDED		32

/** This bit is set if all aux table names (both common tables and
index tables) of a FTS table are in HEX format. */
#define DICT_TF2_FTS_AUX_HEX_NAME	64

/** Intrinsic table bit
Intrinsic table is table created internally by MySQL modules viz. Optimizer,
FTS, etc.... Intrinsic table has all the properties of the normal table except
it is not created by user and so not visible to end-user. */
#define DICT_TF2_INTRINSIC		128

/** Encryption table bit. */
#define DICT_TF2_ENCRYPTION		256

/* @} */

#define DICT_TF2_FLAG_SET(table, flag)		\
	(table->flags2 |= (flag))

#define DICT_TF2_FLAG_IS_SET(table, flag)	\
	(table->flags2 & (flag))

#define DICT_TF2_FLAG_UNSET(table, flag)	\
	(table->flags2 &= ~(flag))


/** Tables could be chained together with Foreign key constraint. When
first load the parent table, we would load all of its descedents.
This could result in rescursive calls and out of stack error eventually.
DICT_FK_MAX_RECURSIVE_LOAD defines the maximum number of recursive loads,
when exceeded, the child table will not be loaded. It will be loaded when
the foreign constraint check needs to be run. */
#define DICT_FK_MAX_RECURSIVE_LOAD      20

/** Similarly, when tables are chained together with foreign key constraints
with on cascading delete/update clause, delete from parent table could
result in recursive cascading calls. This defines the maximum number of
such cascading deletes/updates allowed. When exceeded, the delete from
parent table will fail, and user has to drop excessive foreign constraint
before proceeds. */
#define FK_MAX_CASCADE_DEL		15

/**********************************************************************//**
Creates a table memory object.
@return own: table object */
dict_table_t*
dict_mem_table_create(
/*==================*/
	const char*	name,		/*!< in: table name */
	ulint		space,		/*!< in: space where the clustered index
					of the table is placed */
	ulint		n_cols,		/*!< in: total number of columns
					including virtual and non-virtual
					columns */
	ulint		n_v_cols,	/*!< in: number of virtual columns */
	ulint		flags,		/*!< in: table flags */
	ulint		flags2);	/*!< in: table flags2 */
/****************************************************************//**
Free a table memory object. */
void
dict_mem_table_free(
/*================*/
	dict_table_t*	table);		/*!< in: table */
/**********************************************************************//**
Adds a column definition to a table. */
void
dict_mem_table_add_col(
/*===================*/
	dict_table_t*	table,	/*!< in: table */
	mem_heap_t*	heap,	/*!< in: temporary memory heap, or NULL */
	const char*	name,	/*!< in: column name, or NULL */
	ulint		mtype,	/*!< in: main datatype */
	ulint		prtype,	/*!< in: precise type */
	ulint		len);	/*!< in: precision */
/** Adds a virtual column definition to a table.
@param[in,out]	table		table
@param[in]	heap		temporary memory heap, or NULL. It is
				used to store name when we have not finished
				adding all columns. When all columns are
				added, the whole name will copy to memory from
				table->heap
@param[in]	name		column name
@param[in]	mtype		main datatype
@param[in]	prtype		precise type
@param[in]	len		length
@param[in]	pos		position in a table
@param[in]	num_base	number of base columns
@return the virtual column definition */
dict_v_col_t*
dict_mem_table_add_v_col(
	dict_table_t*	table,
	mem_heap_t*	heap,
	const char*	name,
	ulint		mtype,
	ulint		prtype,
	ulint		len,
	ulint		pos,
	ulint		num_base);

/** Adds a stored column definition to a table.
@param[in]	table		table
@param[in]	num_base	number of base columns. */
void
dict_mem_table_add_s_col(
	dict_table_t*	table,
	ulint		num_base);

/**********************************************************************//**
Renames a column of a table in the data dictionary cache. */
void
dict_mem_table_col_rename(
/*======================*/
	dict_table_t*	table,	/*!< in/out: table */
	ulint		nth_col,/*!< in: column index */
	const char*	from,	/*!< in: old column name */
	const char*	to,	/*!< in: new column name */
	bool		is_virtual);
				/*!< in: if this is a virtual column */
/**********************************************************************//**
This function populates a dict_col_t memory structure with
supplied information. */
void
dict_mem_fill_column_struct(
/*========================*/
	dict_col_t*	column,		/*!< out: column struct to be
					filled */
	ulint		col_pos,	/*!< in: column position */
	ulint		mtype,		/*!< in: main data type */
	ulint		prtype,		/*!< in: precise type */
	ulint		col_len);	/*!< in: column length */
/**********************************************************************//**
This function poplulates a dict_index_t index memory structure with
supplied information. */
UNIV_INLINE
void
dict_mem_fill_index_struct(
/*=======================*/
	dict_index_t*	index,		/*!< out: index to be filled */
	mem_heap_t*	heap,		/*!< in: memory heap */
	const char*	table_name,	/*!< in: table name */
	const char*	index_name,	/*!< in: index name */
	ulint		space,		/*!< in: space where the index tree is
					placed, ignored if the index is of
					the clustered type */
	ulint		type,		/*!< in: DICT_UNIQUE,
					DICT_CLUSTERED, ... ORed */
	ulint		n_fields);	/*!< in: number of fields */
/**********************************************************************//**
Creates an index memory object.
@return own: index object */
dict_index_t*
dict_mem_index_create(
/*==================*/
	const char*	table_name,	/*!< in: table name */
	const char*	index_name,	/*!< in: index name */
	ulint		space,		/*!< in: space where the index tree is
					placed, ignored if the index is of
					the clustered type */
	ulint		type,		/*!< in: DICT_UNIQUE,
					DICT_CLUSTERED, ... ORed */
	ulint		n_fields);	/*!< in: number of fields */
/**********************************************************************//**
Adds a field definition to an index. NOTE: does not take a copy
of the column name if the field is a column. The memory occupied
by the column name may be released only after publishing the index. */
void
dict_mem_index_add_field(
/*=====================*/
	dict_index_t*	index,		/*!< in: index */
	const char*	name,		/*!< in: column name */
	ulint		prefix_len);	/*!< in: 0 or the column prefix length
					in a MySQL index like
					INDEX (textcol(25)) */
/**********************************************************************//**
Frees an index memory object. */
void
dict_mem_index_free(
/*================*/
	dict_index_t*	index);	/*!< in: index */
/**********************************************************************//**
Creates and initializes a foreign constraint memory object.
@return own: foreign constraint struct */
dict_foreign_t*
dict_mem_foreign_create(void);
/*=========================*/

/**********************************************************************//**
Sets the foreign_table_name_lookup pointer based on the value of
lower_case_table_names.  If that is 0 or 1, foreign_table_name_lookup
will point to foreign_table_name.  If 2, then another string is
allocated from the heap and set to lower case. */
void
dict_mem_foreign_table_name_lookup_set(
/*===================================*/
	dict_foreign_t*	foreign,	/*!< in/out: foreign struct */
	ibool		do_alloc);	/*!< in: is an alloc needed */

/**********************************************************************//**
Sets the referenced_table_name_lookup pointer based on the value of
lower_case_table_names.  If that is 0 or 1, referenced_table_name_lookup
will point to referenced_table_name.  If 2, then another string is
allocated from the heap and set to lower case. */
void
dict_mem_referenced_table_name_lookup_set(
/*======================================*/
	dict_foreign_t*	foreign,	/*!< in/out: foreign struct */
	ibool		do_alloc);	/*!< in: is an alloc needed */

/** Fills the dependent virtual columns in a set.
Reason for being dependent are
1) FK can be present on base column of virtual columns
2) FK can be present on column which is a part of virtual index
@param[in,out] foreign foreign key information. */
void
dict_mem_foreign_fill_vcol_set(
       dict_foreign_t*	foreign);

/** Fill virtual columns set in each fk constraint present in the table.
@param[in,out] table   innodb table object. */
void
dict_mem_table_fill_foreign_vcol_set(
        dict_table_t*	table);

/** Free the vcol_set from all foreign key constraint on the table.
@param[in,out] table   innodb table object. */
void
dict_mem_table_free_foreign_vcol_set(
	dict_table_t*	table);

/** Create a temporary tablename like "#sql-ibtid-inc where
  tid = the Table ID
  inc = a randomly initialized number that is incremented for each file
The table ID is a 64 bit integer, can use up to 20 digits, and is
initialized at bootstrap. The second number is 32 bits, can use up to 10
digits, and is initialized at startup to a randomly distributed number.
It is hoped that the combination of these two numbers will provide a
reasonably unique temporary file name.
@param[in]	heap	A memory heap
@param[in]	dbtab	Table name in the form database/table name
@param[in]	id	Table id
@return A unique temporary tablename suitable for InnoDB use */
char*
dict_mem_create_temporary_tablename(
	mem_heap_t*	heap,
	const char*	dbtab,
	table_id_t	id);

/** Initialize dict memory variables */
void
dict_mem_init(void);

/** SQL identifier name wrapper for pretty-printing */
class id_name_t
{
public:
	/** Default constructor */
	id_name_t()
		: m_name()
	{}
	/** Constructor
	@param[in]	name	identifier to assign */
	explicit id_name_t(
		const char*	name)
		: m_name(name)
	{}

	/** Assignment operator
	@param[in]	name	identifier to assign */
	id_name_t& operator=(
		const char*	name)
	{
		m_name = name;
		return(*this);
	}

	/** Implicit type conversion
	@return the name */
	operator const char*() const
	{
		return(m_name);
	}

	/** Explicit type conversion
	@return the name */
	const char* operator()() const
	{
		return(m_name);
	}

private:
	/** The name in internal representation */
	const char*	m_name;
};

/** Table name wrapper for pretty-printing */
struct table_name_t
{
	/** The name in internal representation */
	char*	m_name;
};

/** Data structure for a column in a table */
struct dict_col_t{
	/*----------------------*/
	/** The following are copied from dtype_t,
	so that all bit-fields can be packed tightly. */
	/* @{ */
	unsigned	prtype:32;	/*!< precise type; MySQL data
					type, charset code, flags to
					indicate nullability,
					signedness, whether this is a
					binary string, whether this is
					a true VARCHAR where MySQL
					uses 2 bytes to store the length */
	unsigned	mtype:8;	/*!< main data type */

	/* the remaining fields do not affect alphabetical ordering: */

	unsigned	len:16;		/*!< length; for MySQL data this
					is field->pack_length(),
					except that for a >= 5.0.3
					type true VARCHAR this is the
					maximum byte length of the
					string data (in addition to
					the string, MySQL uses 1 or 2
					bytes to store the string length) */

	unsigned	mbminmaxlen:5;	/*!< minimum and maximum length of a
					character, in bytes;
					DATA_MBMINMAXLEN(mbminlen,mbmaxlen);
					mbminlen=DATA_MBMINLEN(mbminmaxlen);
					mbmaxlen=DATA_MBMINLEN(mbminmaxlen) */
	/*----------------------*/
	/* End of definitions copied from dtype_t */
	/* @} */

	unsigned	ind:10;		/*!< table column position
					(starting from 0) */
	unsigned	ord_part:1;	/*!< nonzero if this column
					appears in the ordering fields
					of an index */
	unsigned	max_prefix:12;	/*!< maximum index prefix length on
					this column. Our current max limit is
					3072 for Barracuda table */
};

/** Index information put in a list of virtual column structure. Index
id and virtual column position in the index will be logged.
There can be multiple entries for a given index, with a different position. */
struct dict_v_idx_t {
	/** active index on the column */
	dict_index_t*	index;

	/** position in this index */
	ulint		nth_field;
};

/** Index list to put in dict_v_col_t */
typedef	std::list<dict_v_idx_t, ut_allocator<dict_v_idx_t> >	dict_v_idx_list;

/** Data structure for a virtual column in a table */
struct dict_v_col_t{
	/** column structure */
	dict_col_t		m_col;

	/** array of base column ptr */
	dict_col_t**		base_col;

	/** number of base column */
	ulint			num_base;

	/** column pos in table */
	ulint			v_pos;

	/** Virtual index list, and column position in the index,
	the allocated memory is not from table->heap, nor it is
	tracked by dict_sys->size */
	dict_v_idx_list*	v_indexes;

};

/** Data structure for newly added virtual column in a table */
struct dict_add_v_col_t{
	/** number of new virtual column */
	ulint			n_v_col;

	/** column structures */
	const dict_v_col_t*	v_col;

	/** new col names */
	const char**		v_col_name;
};

/** Data structure for a stored column in a table. */
struct dict_s_col_t {
	/** Stored column ptr */
	dict_col_t*	m_col;
	/** array of base col ptr */
	dict_col_t**	base_col;
	/** number of base columns */
	ulint		num_base;
	/** column pos in table */
	ulint		s_pos;
};

/** list to put stored column for create_table_info_t */
typedef std::list<dict_s_col_t, ut_allocator<dict_s_col_t> >	dict_s_col_list;

/** @brief DICT_ANTELOPE_MAX_INDEX_COL_LEN is measured in bytes and
is the maximum indexed column length (or indexed prefix length) in
ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT. Also, in any format,
any fixed-length field that is longer than this will be encoded as
a variable-length field.

It is set to 3*256, so that one can create a column prefix index on
256 characters of a TEXT or VARCHAR column also in the UTF-8
charset. In that charset, a character may take at most 3 bytes.  This
constant MUST NOT BE CHANGED, or the compatibility of InnoDB data
files would be at risk! */
#define DICT_ANTELOPE_MAX_INDEX_COL_LEN	REC_ANTELOPE_MAX_INDEX_COL_LEN

/** Find out maximum indexed column length by its table format.
For ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT, the maximum
field length is REC_ANTELOPE_MAX_INDEX_COL_LEN - 1 (767). For
Barracuda row formats COMPRESSED and DYNAMIC, the length could
be REC_VERSION_56_MAX_INDEX_COL_LEN (3072) bytes */
#define DICT_MAX_FIELD_LEN_BY_FORMAT(table)				\
		((dict_table_get_format(table) < UNIV_FORMAT_B)		\
			? (REC_ANTELOPE_MAX_INDEX_COL_LEN - 1)		\
			: REC_VERSION_56_MAX_INDEX_COL_LEN)

#define DICT_MAX_FIELD_LEN_BY_FORMAT_FLAG(flags)			\
		((DICT_TF_HAS_ATOMIC_BLOBS(flags) < UNIV_FORMAT_B)	\
			? (REC_ANTELOPE_MAX_INDEX_COL_LEN - 1)		\
			: REC_VERSION_56_MAX_INDEX_COL_LEN)

/** Defines the maximum fixed length column size */
#define DICT_MAX_FIXED_COL_LEN		DICT_ANTELOPE_MAX_INDEX_COL_LEN

/** Data structure for a field in an index */
struct dict_field_t{
	dict_field_t() { memset(this, 0, sizeof(*this)); }

	dict_col_t*	col;		/*!< pointer to the table column */
	id_name_t	name;		/*!< name of the column */
	unsigned	prefix_len:12;	/*!< 0 or the length of the column
					prefix in bytes in a MySQL index of
					type, e.g., INDEX (textcol(25));
					must be smaller than
					DICT_MAX_FIELD_LEN_BY_FORMAT;
					NOTE that in the UTF-8 charset, MySQL
					sets this to (mbmaxlen * the prefix len)
					in UTF-8 chars */
	unsigned	fixed_len:10;	/*!< 0 or the fixed length of the
					column if smaller than
					DICT_ANTELOPE_MAX_INDEX_COL_LEN */
};

/**********************************************************************//**
PADDING HEURISTIC BASED ON LINEAR INCREASE OF PADDING TO AVOID
COMPRESSION FAILURES
(Note: this is relevant only for compressed indexes)
GOAL: Avoid compression failures by maintaining information about the
compressibility of data. If data is not very compressible then leave
some extra space 'padding' in the uncompressed page making it more
likely that compression of less than fully packed uncompressed page will
succeed.

This padding heuristic works by increasing the pad linearly until the
desired failure rate is reached. A "round" is a fixed number of
compression operations.
After each round, the compression failure rate for that round is
computed. If the failure rate is too high, then padding is incremented
by a fixed value, otherwise it's left intact.
If the compression failure is lower than the desired rate for a fixed
number of consecutive rounds, then the padding is decreased by a fixed
value. This is done to prevent overshooting the padding value,
and to accommodate the possible change in data compressibility. */

/** Number of zip ops in one round. */
#define ZIP_PAD_ROUND_LEN			(128)

/** Number of successful rounds after which the padding is decreased */
#define ZIP_PAD_SUCCESSFUL_ROUND_LIMIT		(5)

/** Amount by which padding is increased. */
#define ZIP_PAD_INCR				(128)

/** Percentage of compression failures that are allowed in a single
round */
extern ulong	zip_failure_threshold_pct;

/** Maximum percentage of a page that can be allowed as a pad to avoid
compression failures */
extern ulong	zip_pad_max;

/** Data structure to hold information about about how much space in
an uncompressed page should be left as padding to avoid compression
failures. This estimate is based on a self-adapting heuristic. */
struct zip_pad_info_t {
	SysMutex*	mutex;	/*!< mutex protecting the info */
	ulint		pad;	/*!< number of bytes used as pad */
	ulint		success;/*!< successful compression ops during
				current round */
	ulint		failure;/*!< failed compression ops during
				current round */
	ulint		n_rounds;/*!< number of currently successful
				rounds */
	volatile os_once::state_t
			mutex_created;
				/*!< Creation state of mutex member */
};

/** If key is fixed length key then cache the record offsets on first
computation. This will help save computation cycle that generate same
redundant data. */
class rec_cache_t
{
public:
	/** Constructor */
	rec_cache_t()
		:
		rec_size(),
		offsets(),
		sz_of_offsets(),
		fixed_len_key(),
		offsets_cached(),
		key_has_null_cols()
	{
		/* Do Nothing. */
	}

public:
	/** Record size. (for fixed length key record size is constant) */
	ulint		rec_size;

	/** Holds reference to cached offsets for record. */
	ulint*		offsets;

	/** Size of offset array */
	uint32_t	sz_of_offsets;

	/** If true, then key is fixed length key. */
	bool		fixed_len_key;

	/** If true, then offset has been cached for re-use. */
	bool		offsets_cached;

	/** If true, then key part can have columns that can take
	NULL values. */
	bool		key_has_null_cols;
};

/** Cache position of last inserted or selected record by caching record
and holding reference to the block where record resides.
Note: We don't commit mtr and hold it beyond a transaction lifetime as this is
a special case (intrinsic table) that are not shared accross connection. */
class last_ops_cur_t
{
public:
	/** Constructor */
	last_ops_cur_t()
		:
		rec(),
		block(),
		mtr(),
		disable_caching(),
		invalid()
	{
		/* Do Nothing. */
	}

	/* Commit mtr and re-initialize cache record and block to NULL. */
	void release()
	{
		if (mtr.is_active()) {
			mtr_commit(&mtr);
		}
		rec = NULL;
		block = NULL;
		invalid = false;
	}

public:
	/** last inserted/selected record. */
	rec_t*		rec;

	/** block where record reside. */
	buf_block_t*	block;

	/** active mtr that will be re-used for next insert/select. */
	mtr_t		mtr;

	/** disable caching. (disabled when table involves blob/text.) */
	bool		disable_caching;

	/** If index structure is undergoing structural change viz.
	split then invalidate the cached position as it would be no more
	remain valid. Will be re-cached on post-split insert. */
	bool		invalid;
};

/** "GEN_CLUST_INDEX" is the name reserved for InnoDB default
system clustered index when there is no primary key. */
const char innobase_index_reserve_name[] = "GEN_CLUST_INDEX";

/** Data structure for an index.  Most fields will be
initialized to 0, NULL or FALSE in dict_mem_index_create(). */
struct dict_index_t{
	index_id_t	id;	/*!< id of the index */
	mem_heap_t*	heap;	/*!< memory heap */
	id_name_t	name;	/*!< index name */
	const char*	table_name;/*!< table name */
	dict_table_t*	table;	/*!< back pointer to table */
#ifndef UNIV_HOTBACKUP
	unsigned	space:32;
				/*!< space where the index tree is placed */
	unsigned	page:32;/*!< index tree root page number */
	unsigned	merge_threshold:6;
				/*!< In the pessimistic delete, if the page
				data size drops below this limit in percent,
				merging it to a neighbor is tried */
# define DICT_INDEX_MERGE_THRESHOLD_DEFAULT 50
#endif /* !UNIV_HOTBACKUP */
	unsigned	type:DICT_IT_BITS;
				/*!< index type (DICT_CLUSTERED, DICT_UNIQUE,
				DICT_IBUF, DICT_CORRUPT) */
#define MAX_KEY_LENGTH_BITS 12
	unsigned	trx_id_offset:MAX_KEY_LENGTH_BITS;
				/*!< position of the trx id column
				in a clustered index record, if the fields
				before it are known to be of a fixed size,
				0 otherwise */
#if (1<<MAX_KEY_LENGTH_BITS) < MAX_KEY_LENGTH
# error (1<<MAX_KEY_LENGTH_BITS) < MAX_KEY_LENGTH
#endif
	unsigned	n_user_defined_cols:10;
				/*!< number of columns the user defined to
				be in the index: in the internal
				representation we add more columns */
	unsigned	allow_duplicates:1;
				/*!< if true, allow duplicate values
				even if index is created with unique
				constraint */
	unsigned	nulls_equal:1;
				/*!< if true, SQL NULL == SQL NULL */
	unsigned	disable_ahi:1;
				/*!< in true, then disable AHI.
				Currently limited to intrinsic
				temporary table as index id is not
				unqiue for such table which is one of the
				validation criterion for ahi. */
	unsigned	n_uniq:10;/*!< number of fields from the beginning
				which are enough to determine an index
				entry uniquely */
	unsigned	n_def:10;/*!< number of fields defined so far */
	unsigned	n_fields:10;/*!< number of fields in the index */
	unsigned	n_nullable:10;/*!< number of nullable fields */
	unsigned	cached:1;/*!< TRUE if the index object is in the
				dictionary cache */
	unsigned	to_be_dropped:1;
				/*!< TRUE if the index is to be dropped;
				protected by dict_operation_lock */
	unsigned	online_status:2;
				/*!< enum online_index_status.
				Transitions from ONLINE_INDEX_COMPLETE (to
				ONLINE_INDEX_CREATION) are protected
				by dict_operation_lock and
				dict_sys->mutex. Other changes are
				protected by index->lock. */
	unsigned	uncommitted:1;
				/*!< a flag that is set for secondary indexes
				that have not been committed to the
				data dictionary yet */

#ifdef UNIV_DEBUG
	uint32_t	magic_n;/*!< magic number */
/** Value of dict_index_t::magic_n */
# define DICT_INDEX_MAGIC_N	76789786
#endif
	dict_field_t*	fields;	/*!< array of field descriptions */
	st_mysql_ftparser*
			parser;	/*!< fulltext parser plugin */
	bool		is_ngram;
				/*!< true if it's ngram parser */
	bool		has_new_v_col;
				/*!< whether it has a newly added virtual
				column in ALTER */
	bool		index_fts_syncing;/*!< Whether the fts index is
				still syncing in the background */
#ifndef UNIV_HOTBACKUP
	UT_LIST_NODE_T(dict_index_t)
			indexes;/*!< list of indexes of the table */
	btr_search_t*	search_info;
				/*!< info used in optimistic searches */
	row_log_t*	online_log;
				/*!< the log of modifications
				during online index creation;
				valid when online_status is
				ONLINE_INDEX_CREATION */
	/*----------------------*/
	/** Statistics for query optimization */
	/* @{ */
	ib_uint64_t*	stat_n_diff_key_vals;
				/*!< approximate number of different
				key values for this index, for each
				n-column prefix where 1 <= n <=
				dict_get_n_unique(index) (the array is
				indexed from 0 to n_uniq-1); we
				periodically calculate new
				estimates */
	ib_uint64_t*	stat_n_sample_sizes;
				/*!< number of pages that were sampled
				to calculate each of stat_n_diff_key_vals[],
				e.g. stat_n_sample_sizes[3] pages were sampled
				to get the number stat_n_diff_key_vals[3]. */
	ib_uint64_t*	stat_n_non_null_key_vals;
				/* approximate number of non-null key values
				for this index, for each column where
				1 <= n <= dict_get_n_unique(index) (the array
				is indexed from 0 to n_uniq-1); This
				is used when innodb_stats_method is
				"nulls_ignored". */
	ulint		stat_index_size;
				/*!< approximate index size in
				database pages */
	ulint		stat_n_leaf_pages;
				/*!< approximate number of leaf pages in the
				index tree */
	/* @} */
	last_ops_cur_t*	last_ins_cur;
				/*!< cache the last insert position.
				Currently limited to auto-generated
				clustered index on intrinsic table only. */
	last_ops_cur_t*	last_sel_cur;
				/*!< cache the last selected position
				Currently limited to intrinsic table only. */
	rec_cache_t	rec_cache;
				/*!< cache the field that needs to be
				re-computed on each insert.
				Limited to intrinsic table as this is common
				share and can't be used without protection
				if table is accessible to multiple-threads. */
	rtr_ssn_t	rtr_ssn;/*!< Node sequence number for RTree */
	rtr_info_track_t*
			rtr_track;/*!< tracking all R-Tree search cursors */
	trx_id_t	trx_id; /*!< id of the transaction that created this
				index, or 0 if the index existed
				when InnoDB was started up */
	zip_pad_info_t	zip_pad;/*!< Information about state of
				compression failures and successes */
	rw_lock_t	lock;	/*!< read-write lock protecting the
				upper levels of the index tree */

	/** Determine if the index has been committed to the
	data dictionary.
	@return whether the index definition has been committed */
	bool is_committed() const
	{
		ut_ad(!uncommitted || !(type & DICT_CLUSTERED));
		return(UNIV_LIKELY(!uncommitted));
	}

	/** Flag an index committed or uncommitted.
	@param[in]	committed	whether the index is committed */
	void set_committed(bool committed)
	{
		ut_ad(!to_be_dropped);
		ut_ad(committed || !(type & DICT_CLUSTERED));
		uncommitted = !committed;
	}
#endif /* !UNIV_HOTBACKUP */
};

/** The status of online index creation */
enum online_index_status {
	/** the index is complete and ready for access */
	ONLINE_INDEX_COMPLETE = 0,
	/** the index is being created, online
	(allowing concurrent modifications) */
	ONLINE_INDEX_CREATION,
	/** secondary index creation was aborted and the index
	should be dropped as soon as index->table->n_ref_count reaches 0,
	or online table rebuild was aborted and the clustered index
	of the original table should soon be restored to
	ONLINE_INDEX_COMPLETE */
	ONLINE_INDEX_ABORTED,
	/** the online index creation was aborted, the index was
	dropped from the data dictionary and the tablespace, and it
	should be dropped from the data dictionary cache as soon as
	index->table->n_ref_count reaches 0. */
	ONLINE_INDEX_ABORTED_DROPPED
};

/** Set to store the virtual columns which are affected by Foreign
key constraint. */
typedef std::set<dict_v_col_t*, std::less<dict_v_col_t*>,
		ut_allocator<dict_v_col_t*> >		dict_vcol_set;

/** Data structure for a foreign key constraint; an example:
FOREIGN KEY (A, B) REFERENCES TABLE2 (C, D).  Most fields will be
initialized to 0, NULL or FALSE in dict_mem_foreign_create(). */
struct dict_foreign_t{
	mem_heap_t*	heap;		/*!< this object is allocated from
					this memory heap */
	char*		id;		/*!< id of the constraint as a
					null-terminated string */
	unsigned	n_fields:10;	/*!< number of indexes' first fields
					for which the foreign key
					constraint is defined: we allow the
					indexes to contain more fields than
					mentioned in the constraint, as long
					as the first fields are as mentioned */
	unsigned	type:6;		/*!< 0 or DICT_FOREIGN_ON_DELETE_CASCADE
					or DICT_FOREIGN_ON_DELETE_SET_NULL */
	char*		foreign_table_name;/*!< foreign table name */
	char*		foreign_table_name_lookup;
				/*!< foreign table name used for dict lookup */
	dict_table_t*	foreign_table;	/*!< table where the foreign key is */
	const char**	foreign_col_names;/*!< names of the columns in the
					foreign key */
	char*		referenced_table_name;/*!< referenced table name */
	char*		referenced_table_name_lookup;
				/*!< referenced table name for dict lookup*/
	dict_table_t*	referenced_table;/*!< table where the referenced key
					is */
	const char**	referenced_col_names;/*!< names of the referenced
					columns in the referenced table */
	dict_index_t*	foreign_index;	/*!< foreign index; we require that
					both tables contain explicitly defined
					indexes for the constraint: InnoDB
					does not generate new indexes
					implicitly */
	dict_index_t*	referenced_index;/*!< referenced index */

	dict_vcol_set*	v_cols;		/*!< set of virtual columns affected
					by foreign key constraint. */
};

std::ostream&
operator<< (std::ostream& out, const dict_foreign_t& foreign);

struct dict_foreign_print {

	dict_foreign_print(std::ostream& out)
		: m_out(out)
	{}

	void operator()(const dict_foreign_t* foreign) {
		m_out << *foreign;
	}
private:
	std::ostream&	m_out;
};

/** Compare two dict_foreign_t objects using their ids. Used in the ordering
of dict_table_t::foreign_set and dict_table_t::referenced_set.  It returns
true if the first argument is considered to go before the second in the
strict weak ordering it defines, and false otherwise. */
struct dict_foreign_compare {

	bool operator()(
		const dict_foreign_t*	lhs,
		const dict_foreign_t*	rhs) const
	{
		return(ut_strcmp(lhs->id, rhs->id) < 0);
	}
};

/** A function object to find a foreign key with the given index as the
referenced index. Return the foreign key with matching criteria or NULL */
struct dict_foreign_with_index {

	dict_foreign_with_index(const dict_index_t*	index)
	: m_index(index)
	{}

	bool operator()(const dict_foreign_t*	foreign) const
	{
		return(foreign->referenced_index == m_index);
	}

	const dict_index_t*	m_index;
};

/* A function object to check if the foreign constraint is between different
tables.  Returns true if foreign key constraint is between different tables,
false otherwise. */
struct dict_foreign_different_tables {

	bool operator()(const dict_foreign_t*	foreign) const
	{
		return(foreign->foreign_table != foreign->referenced_table);
	}
};

/** A function object to check if the foreign key constraint has the same
name as given.  If the full name of the foreign key constraint doesn't match,
then, check if removing the database name from the foreign key constraint
matches. Return true if it matches, false otherwise. */
struct dict_foreign_matches_id {

	dict_foreign_matches_id(const char* id)
		: m_id(id)
	{}

	bool operator()(const dict_foreign_t*	foreign) const
	{
		if (0 == innobase_strcasecmp(foreign->id, m_id)) {
			return(true);
		}
		if (const char* pos = strchr(foreign->id, '/')) {
			if (0 == innobase_strcasecmp(m_id, pos + 1)) {
				return(true);
			}
		}
		return(false);
	}

	const char*	m_id;
};

typedef std::set<
	dict_foreign_t*,
	dict_foreign_compare,
	ut_allocator<dict_foreign_t*> >	dict_foreign_set;

std::ostream&
operator<< (std::ostream& out, const dict_foreign_set& fk_set);

/** Function object to check if a foreign key object is there
in the given foreign key set or not.  It returns true if the
foreign key is not found, false otherwise */
struct dict_foreign_not_exists {
	dict_foreign_not_exists(const dict_foreign_set& obj_)
		: m_foreigns(obj_)
	{}

	/* Return true if the given foreign key is not found */
	bool operator()(dict_foreign_t* const & foreign) const {
		return(m_foreigns.find(foreign) == m_foreigns.end());
	}
private:
	const dict_foreign_set&	m_foreigns;
};

/** Validate the search order in the foreign key set.
@param[in]	fk_set	the foreign key set to be validated
@return true if search order is fine in the set, false otherwise. */
bool
dict_foreign_set_validate(
	const dict_foreign_set&	fk_set);

/** Validate the search order in the foreign key sets of the table
(foreign_set and referenced_set).
@param[in]	table	table whose foreign key sets are to be validated
@return true if foreign key sets are fine, false otherwise. */
bool
dict_foreign_set_validate(
	const dict_table_t&	table);

/*********************************************************************//**
Frees a foreign key struct. */
inline
void
dict_foreign_free(
/*==============*/
	dict_foreign_t*	foreign)	/*!< in, own: foreign key struct */
{
	if (foreign->v_cols != NULL) {
		UT_DELETE(foreign->v_cols);
	}

	mem_heap_free(foreign->heap);
}

/** The destructor will free all the foreign key constraints in the set
by calling dict_foreign_free() on each of the foreign key constraints.
This is used to free the allocated memory when a local set goes out
of scope. */
struct dict_foreign_set_free {

	dict_foreign_set_free(const dict_foreign_set&	foreign_set)
		: m_foreign_set(foreign_set)
	{}

	~dict_foreign_set_free()
	{
		std::for_each(m_foreign_set.begin(),
			      m_foreign_set.end(),
			      dict_foreign_free);
	}

	const dict_foreign_set&	m_foreign_set;
};

/** The flags for ON_UPDATE and ON_DELETE can be ORed; the default is that
a foreign key constraint is enforced, therefore RESTRICT just means no flag */
/* @{ */
#define DICT_FOREIGN_ON_DELETE_CASCADE	1	/*!< ON DELETE CASCADE */
#define DICT_FOREIGN_ON_DELETE_SET_NULL	2	/*!< ON DELETE SET NULL */
#define DICT_FOREIGN_ON_UPDATE_CASCADE	4	/*!< ON UPDATE CASCADE */
#define DICT_FOREIGN_ON_UPDATE_SET_NULL	8	/*!< ON UPDATE SET NULL */
#define DICT_FOREIGN_ON_DELETE_NO_ACTION 16	/*!< ON DELETE NO ACTION */
#define DICT_FOREIGN_ON_UPDATE_NO_ACTION 32	/*!< ON UPDATE NO ACTION */
/* @} */

/** Display an identifier.
@param[in,out]	s	output stream
@param[in]	id_name	SQL identifier (other than table name)
@return the output stream */
std::ostream&
operator<<(
	std::ostream&		s,
	const id_name_t&	id_name);

/** Display a table name.
@param[in,out]	s		output stream
@param[in]	table_name	table name
@return the output stream */
std::ostream&
operator<<(
	std::ostream&		s,
	const table_name_t&	table_name);

/** List of locks that different transactions have acquired on a table. This
list has a list node that is embedded in a nested union/structure. We have to
generate a specific template for it. */

typedef ut_list_base<lock_t, ut_list_node<lock_t> lock_table_t::*>
	table_lock_list_t;

/** mysql template structure defined in row0mysql.cc */
struct mysql_row_templ_t;

/** Structure defines template related to virtual columns and
their base columns */
struct dict_vcol_templ_t {
	/** number of regular columns */
	ulint			n_col;

	/** number of virtual columns */
	ulint			n_v_col;

	/** array of templates for virtual col and their base columns */
	mysql_row_templ_t**	vtempl;

	/** table's database name */
	std::string		db_name;

	/** table name */
	std::string		tb_name;

	/** share->table_name */
	std::string		share_name;

	/** MySQL record length */
	ulint			rec_len;

	/** default column value if any */
	byte*			default_rec;
};

/* This flag is for sync SQL DDL and memcached DML.
if table->memcached_sync_count == DICT_TABLE_IN_DDL means there's DDL running on
the table, DML from memcached will be blocked. */
#define DICT_TABLE_IN_DDL -1

typedef ib_mutex_t AnalyzeIndexMutex;

/** Data structure for a database table.  Most fields will be
initialized to 0, NULL or FALSE in dict_mem_table_create(). */
struct dict_table_t {

	/** Get reference count.
	@return current value of n_ref_count */
	inline ulint get_ref_count() const;

	/** Acquire the table handle. */
	inline void acquire();

	/** Release the table handle. */
	inline void release();

	/** Id of the table. */
	table_id_t				id;

	/** Memory heap. If you allocate from this heap after the table has
	been created then be sure to account the allocation into
	dict_sys->size. When closing the table we do something like
	dict_sys->size -= mem_heap_get_size(table->heap) and if that is going
	to become negative then we would assert. Something like this should do:
	old_size = mem_heap_get_size()
	mem_heap_alloc()
	new_size = mem_heap_get_size()
	dict_sys->size += new_size - old_size. */
	mem_heap_t*				heap;

	/** Table name. */
	table_name_t				name;

	/** NULL or the directory path where a TEMPORARY table that was
	explicitly created by a user should be placed if innodb_file_per_table
	is defined in my.cnf. In Unix this is usually "/tmp/...",
	in Windows "temp\...". */
	const char*				dir_path_of_temp_table;

	/** NULL or the directory path specified by DATA DIRECTORY. */
	char*					data_dir_path;

	/** NULL or the tablespace name that this table is assigned to,
	specified by the TABLESPACE option.*/
	id_name_t				tablespace;

	/** Space where the clustered index of the table is placed. */
	uint32_t				space;

	/** Stores information about:
	1 row format (redundant or compact),
	2 compressed page size (zip shift size),
	3 whether using atomic blobs,
	4 whether the table has been created with the option DATA DIRECTORY.
	Use DICT_TF_GET_COMPACT(), DICT_TF_GET_ZIP_SSIZE(),
	DICT_TF_HAS_ATOMIC_BLOBS() and DICT_TF_HAS_DATA_DIR() to parse this
	flag. */
	unsigned				flags:DICT_TF_BITS;

	/** Stores information about:
	1 whether the table has been created using CREATE TEMPORARY TABLE,
	2 whether the table has an internally defined DOC ID column,
	3 whether the table has a FTS index,
	4 whether DOC ID column need to be added to the FTS index,
	5 whether the table is being created its own tablespace,
	6 whether the table has been DISCARDed,
	7 whether the aux FTS tables names are in hex.
	8 whether the table is instinc table.
	9 whether the table has encryption setting.
	Use DICT_TF2_FLAG_IS_SET() to parse this flag. */
	unsigned				flags2:DICT_TF2_BITS;

	/** TRUE if this is in a single-table tablespace and the .ibd file is
	missing. Then we must return in ha_innodb.cc an error if the user
	tries to query such an orphaned table. */
	unsigned				ibd_file_missing:1;

	/** TRUE if the table object has been added to the dictionary cache. */
	unsigned				cached:1;

	/** TRUE if the table is to be dropped, but not yet actually dropped
	(could in the background drop list). It is turned on at the beginning
	of row_drop_table_for_mysql() and turned off just before we start to
	update system tables for the drop. It is protected by
	dict_operation_lock. */
	unsigned				to_be_dropped:1;

	/** Number of non-virtual columns defined so far. */
	unsigned				n_def:10;

	/** Number of non-virtual columns. */
	unsigned				n_cols:10;

	/** Number of total columns (inlcude virtual and non-virtual) */
	unsigned				n_t_cols:10;

	/** Number of total columns defined so far. */
	unsigned                                n_t_def:10;

	/** Number of virtual columns defined so far. */
	unsigned                                n_v_def:10;

	/** Number of virtual columns. */
	unsigned                                n_v_cols:10;

	/** TRUE if it's not an InnoDB system table or a table that has no FK
	relationships. */
	unsigned				can_be_evicted:1;

	/** TRUE if table is corrupted. */
	unsigned				corrupted:1;

	/** TRUE if some indexes should be dropped after ONLINE_INDEX_ABORTED
	or ONLINE_INDEX_ABORTED_DROPPED. */
	unsigned				drop_aborted:1;

	/** Array of column descriptions. */
	dict_col_t*				cols;

	/** Array of virtual column descriptions. */
	dict_v_col_t*				v_cols;

	/** List of stored column descriptions. It is used only for foreign key
	check during create table and copy alter operations.
	During copy alter, s_cols list is filled during create table operation
	and need to preserve till rename table operation. That is the
	reason s_cols is a part of dict_table_t */
	dict_s_col_list*			s_cols;

	/** Column names packed in a character string
	"name1\0name2\0...nameN\0". Until the string contains n_cols, it will
	be allocated from a temporary heap. The final string will be allocated
	from table->heap. */
	const char*				col_names;

	/** Virtual column names */
	const char*				v_col_names;

#ifndef UNIV_HOTBACKUP
	/** Hash chain node. */
	hash_node_t				name_hash;

	/** Hash chain node. */
	hash_node_t				id_hash;

	/** The FTS_DOC_ID_INDEX, or NULL if no fulltext indexes exist */
	dict_index_t*				fts_doc_id_index;

	/** List of indexes of the table. */
	UT_LIST_BASE_NODE_T(dict_index_t)	indexes;

	/** List of foreign key constraints in the table. These refer to
	columns in other tables. */
	UT_LIST_BASE_NODE_T(dict_foreign_t)	foreign_list;

	/** List of foreign key constraints which refer to this table. */
	UT_LIST_BASE_NODE_T(dict_foreign_t)	referenced_list;

	/** Node of the LRU list of tables. */
	UT_LIST_NODE_T(dict_table_t)		table_LRU;

	/** Maximum recursive level we support when loading tables chained
	together with FK constraints. If exceeds this level, we will stop
	loading child table into memory along with its parent table. */
	unsigned				fk_max_recusive_level:8;

	/** Count of how many foreign key check operations are currently being
	performed on the table. We cannot drop the table while there are
	foreign key checks running on it. */
	ulint					n_foreign_key_checks_running;

	/** Transactions whose view low limit is greater than this number are
	not allowed to store to the MySQL query cache or retrieve from it.
	When a trx with undo logs commits, it sets this to the value of the
	current time. */
	trx_id_t				query_cache_inv_id;

	/** Transaction id that last touched the table definition. Either when
	loading the definition or CREATE TABLE, or ALTER TABLE (prepare,
	commit, and rollback phases). */
	trx_id_t				def_trx_id;

	/*!< set of foreign key constraints in the table; these refer to
	columns in other tables */
	dict_foreign_set			foreign_set;

	/*!< set of foreign key constraints which refer to this table */
	dict_foreign_set			referenced_set;

#ifdef UNIV_DEBUG
	/** This field is used to specify in simulations tables which are so
	big that disk should be accessed. Disk access is simulated by putting
	the thread to sleep for a while. NOTE that this flag is not stored to
	the data dictionary on disk, and the database will forget about value
	TRUE if it has to reload the table definition from disk. */
	ibool					does_not_fit_in_memory;
#endif /* UNIV_DEBUG */

	/** TRUE if the maximum length of a single row exceeds BIG_ROW_SIZE.
	Initialized in dict_table_add_to_cache(). */
	unsigned				big_rows:1;

	/** Statistics for query optimization. @{ */

	/** Creation state of 'stats_latch'. */
	volatile os_once::state_t		stats_latch_created;

	/** This latch protects:
	dict_table_t::stat_initialized,
	dict_table_t::stat_n_rows (*),
	dict_table_t::stat_clustered_index_size,
	dict_table_t::stat_sum_of_other_index_sizes,
	dict_table_t::stat_modified_counter (*),
	dict_table_t::indexes*::stat_n_diff_key_vals[],
	dict_table_t::indexes*::stat_index_size,
	dict_table_t::indexes*::stat_n_leaf_pages.
	(*) Those are not always protected for
	performance reasons. */
	rw_lock_t*				stats_latch;

	/** TRUE if statistics have been calculated the first time after
	database startup or table creation. */
	unsigned				stat_initialized:1;

	/** Timestamp of last recalc of the stats. */
	ib_time_monotonic_t				stats_last_recalc;

	/** The two bits below are set in the 'stat_persistent' member. They
	have the following meaning:
	1. _ON=0, _OFF=0, no explicit persistent stats setting for this table,
	the value of the global srv_stats_persistent is used to determine
	whether the table has persistent stats enabled or not
	2. _ON=0, _OFF=1, persistent stats are explicitly disabled for this
	table, regardless of the value of the global srv_stats_persistent
	3. _ON=1, _OFF=0, persistent stats are explicitly enabled for this
	table, regardless of the value of the global srv_stats_persistent
	4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */
	#define DICT_STATS_PERSISTENT_ON	(1 << 1)
	#define DICT_STATS_PERSISTENT_OFF	(1 << 2)

	/** Indicates whether the table uses persistent stats or not. See
	DICT_STATS_PERSISTENT_ON and DICT_STATS_PERSISTENT_OFF. */
	ib_uint32_t				stat_persistent;

	/** The two bits below are set in the 'stats_auto_recalc' member. They
	have the following meaning:
	1. _ON=0, _OFF=0, no explicit auto recalc setting for this table, the
	value of the global srv_stats_persistent_auto_recalc is used to
	determine whether the table has auto recalc enabled or not
	2. _ON=0, _OFF=1, auto recalc is explicitly disabled for this table,
	regardless of the value of the global srv_stats_persistent_auto_recalc
	3. _ON=1, _OFF=0, auto recalc is explicitly enabled for this table,
	regardless of the value of the global srv_stats_persistent_auto_recalc
	4. _ON=1, _OFF=1, not allowed, we assert if this ever happens. */
	#define DICT_STATS_AUTO_RECALC_ON	(1 << 1)
	#define DICT_STATS_AUTO_RECALC_OFF	(1 << 2)

	/** Indicates whether the table uses automatic recalc for persistent
	stats or not. See DICT_STATS_AUTO_RECALC_ON and
	DICT_STATS_AUTO_RECALC_OFF. */
	ib_uint32_t				stats_auto_recalc;

	/** The number of pages to sample for this table during persistent
	stats estimation. If this is 0, then the value of the global
	srv_stats_persistent_sample_pages will be used instead. */
	ulint					stats_sample_pages;

	/** Approximate number of rows in the table. We periodically calculate
	new estimates. */
	ib_uint64_t				stat_n_rows;

	/** Approximate clustered index size in database pages. */
	ib_uint64_t				stat_clustered_index_size;

	/** Approximate size of other indexes in database pages. */
	ib_uint64_t				stat_sum_of_other_index_sizes;

	/** How many rows are modified since last stats recalc. When a row is
	inserted, updated, or deleted, we add 1 to this number; we calculate
	new estimates for the table and the indexes if the table has changed
	too much, see row_update_statistics_if_needed(). The counter is reset
	to zero at statistics calculation. This counter is not protected by
	any latch, because this is only used for heuristics. */
	ib_uint64_t				stat_modified_counter;

	/** Background stats thread is not working on this table. */
	#define BG_STAT_NONE			0

	/** Set in 'stats_bg_flag' when the background stats code is working
	on this table. The DROP TABLE code waits for this to be cleared before
	proceeding. */
	#define BG_STAT_IN_PROGRESS		(1 << 0)

	/** Set in 'stats_bg_flag' when DROP TABLE starts waiting on
	BG_STAT_IN_PROGRESS to be cleared. The background stats thread will
	detect this and will eventually quit sooner. */
	#define BG_STAT_SHOULD_QUIT		(1 << 1)

	/** The state of the background stats thread wrt this table.
	See BG_STAT_NONE, BG_STAT_IN_PROGRESS and BG_STAT_SHOULD_QUIT.
	Writes are covered by dict_sys->mutex. Dirty reads are possible. */
	byte					stats_bg_flag;

	/* @} */

	/** AUTOINC related members. @{ */

	/* The actual collection of tables locked during AUTOINC read/write is
	kept in trx_t. In order to quickly determine whether a transaction has
	locked the AUTOINC lock we keep a pointer to the transaction here in
	the 'autoinc_trx' member. This is to avoid acquiring the
	lock_sys_t::mutex and scanning the vector in trx_t.
	When an AUTOINC lock has to wait, the corresponding lock instance is
	created on the trx lock heap rather than use the pre-allocated instance
	in autoinc_lock below. */

	/** A buffer for an AUTOINC lock for this table. We allocate the
	memory here so that individual transactions can get it and release it
	without a need to allocate space from the lock heap of the trx:
	otherwise the lock heap would grow rapidly if we do a large insert
	from a select. */
	lock_t*					autoinc_lock;

	/** Creation state of autoinc_mutex member */
	volatile os_once::state_t		autoinc_mutex_created;

	/** Mutex protecting the autoincrement counter. */
	ib_mutex_t*				autoinc_mutex;

	/** Autoinc counter value to give to the next inserted row. */
	ib_uint64_t				autoinc;

	/** This counter is used to track the number of granted and pending
	autoinc locks on this table. This value is set after acquiring the
	lock_sys_t::mutex but we peek the contents to determine whether other
	transactions have acquired the AUTOINC lock or not. Of course only one
	transaction can be granted the lock but there can be multiple
	waiters. */
	ulong					n_waiting_or_granted_auto_inc_locks;

	/** The transaction that currently holds the the AUTOINC lock on this
	table. Protected by lock_sys->mutex. */
	const trx_t*				autoinc_trx;

	/* @} */

	/** Creation state of analyze_index member */
	volatile os_once::state_t	analyze_index_mutex_created;

	/** Mutex protecting the index during analyze. */
	AnalyzeIndexMutex*			analyze_index_mutex;

	/** Count of how many handles are opened to this table from memcached.
	DDL on the table is NOT allowed until this count goes to zero. If
	it is -1, then there's DDL on the table, DML from memcached will be
	blocked. */
	lint					memcached_sync_count;

	/** FTS specific state variables. */
	fts_t*					fts;

	/** Quiescing states, protected by the dict_index_t::lock. ie. we can
	only change the state if we acquire all the latches (dict_index_t::lock)
	in X mode of this table's indexes. */
	ib_quiesce_t				quiesce;

	/** Count of the number of record locks on this table. We use this to
	determine whether we can evict the table from the dictionary cache.
	It is protected by lock_sys->mutex. */
	ulint					n_rec_locks;

#ifndef UNIV_DEBUG
private:
#endif
	/** Count of how many handles are opened to this table. Dropping of the
	table is NOT allowed until this count gets to zero. MySQL does NOT
	itself check the number of open handles at DROP. */
	ulint					n_ref_count;

public:
	/** List of locks on the table. Protected by lock_sys->mutex. */
	table_lock_list_t			locks;

	/** Timestamp of the last modification of this table. */
	time_t					update_time;

	/** row-id counter for use by intrinsic table for getting row-id.
	Given intrinsic table semantics, row-id can be locally maintained
	instead of getting it from central generator which involves mutex
	locking. */
	ib_uint64_t				sess_row_id;

	/** trx_id counter for use by intrinsic table for getting trx-id.
	Intrinsic table are not shared so don't need a central trx-id
	but just need a increased counter to track consistent view while
	proceeding SELECT as part of UPDATE. */
	ib_uint64_t				sess_trx_id;
#endif /* !UNIV_HOTBACKUP */

#ifdef UNIV_DEBUG
	/** Value of 'magic_n'. */
	#define DICT_TABLE_MAGIC_N		76333786

	/** Magic number. */
	ulint					magic_n;
#endif /* UNIV_DEBUG */
	/** mysql_row_templ_t for base columns used for compute the virtual
	columns */
	dict_vcol_templ_t*			vc_templ;

	/** encryption key, it's only for export/import */
	byte*					encryption_key;

	/** encryption iv, it's only for export/import */
	byte*					encryption_iv;
};

/*******************************************************************//**
Initialise the table lock list. */
void
lock_table_lock_list_init(
/*======================*/
	table_lock_list_t*	locks);		/*!< List to initialise */

/** A function object to add the foreign key constraint to the referenced set
of the referenced table, if it exists in the dictionary cache. */
struct dict_foreign_add_to_referenced_table {
	void operator()(dict_foreign_t*	foreign) const
	{
		if (dict_table_t* table = foreign->referenced_table) {
			std::pair<dict_foreign_set::iterator, bool>	ret
				= table->referenced_set.insert(foreign);
			ut_a(ret.second);
		}
	}
};

/** Request for lazy creation of the analyze index mutex of a given table.
@param[in,out]	table	table whose mutex is to be created. */
inline
void
dict_table_analyze_index_create_lazy(
	dict_table_t*	table)
{
	table->analyze_index_mutex = NULL;
	table->analyze_index_mutex_created = os_once::NEVER_DONE;
}

/** Destroy the analyze index mutex of the given table.
@param[in,out]	table	table whose mutex to destroy */
inline
void
dict_table_analyze_index_destroy(
	dict_table_t*	table)
{
	if (table->analyze_index_mutex_created == os_once::DONE
	    && table->analyze_index_mutex != NULL) {
		mutex_free(table->analyze_index_mutex);
		UT_DELETE(table->analyze_index_mutex);
	}
}

/** Destroy the autoinc latch of the given table.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out]	table	table whose stats latch to destroy */
inline
void
dict_table_autoinc_destroy(
	dict_table_t*	table)
{
	if (table->autoinc_mutex_created == os_once::DONE
	    && table->autoinc_mutex != NULL) {
		mutex_free(table->autoinc_mutex);
		UT_DELETE(table->autoinc_mutex);
	}
}

/** Request for lazy creation of the autoinc latch of a given table.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out]	table	table whose autoinc latch is to be created. */
inline
void
dict_table_autoinc_create_lazy(
	dict_table_t*	table)
{
	table->autoinc_mutex = NULL;
	table->autoinc_mutex_created = os_once::NEVER_DONE;
}

/** Request a lazy creation of dict_index_t::zip_pad::mutex.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out]	index	index whose zip_pad mutex is to be created */
inline
void
dict_index_zip_pad_mutex_create_lazy(
	dict_index_t*	index)
{
	index->zip_pad.mutex = NULL;
	index->zip_pad.mutex_created = os_once::NEVER_DONE;
}

/** Destroy the zip_pad_mutex of the given index.
This function is only called from either single threaded environment
or from a thread that has not shared the table object with other threads.
@param[in,out]	table	table whose stats latch to destroy */
inline
void
dict_index_zip_pad_mutex_destroy(
	dict_index_t*	index)
{
	if (index->zip_pad.mutex_created == os_once::DONE
	    && index->zip_pad.mutex != NULL) {
		mutex_free(index->zip_pad.mutex);
		UT_DELETE(index->zip_pad.mutex);
	}
}

/** Release the zip_pad_mutex of a given index.
@param[in,out]	index	index whose zip_pad_mutex is to be released */
inline
void
dict_index_zip_pad_unlock(
	dict_index_t*	index)
{
	mutex_exit(index->zip_pad.mutex);
}

#ifdef UNIV_DEBUG
/** Check if the current thread owns the autoinc_mutex of a given table.
@param[in]	table	the autoinc_mutex belongs to this table
@return true, if the current thread owns the autoinc_mutex, false otherwise.*/
inline
bool
dict_table_autoinc_own(
	const dict_table_t*	table)
{
	return(mutex_own(table->autoinc_mutex));
}
#endif /* UNIV_DEBUG */

/** Check whether the col is used in spatial index or regular index.
@param[in]	col	column to check
@return spatial status */
inline
spatial_status_t
dict_col_get_spatial_status(
	const dict_col_t*	col)
{
	spatial_status_t	spatial_status = SPATIAL_NONE;

	/* Column is not a part of any index. */
	if (!col->ord_part) {
		return(spatial_status);
	}

	if (DATA_GEOMETRY_MTYPE(col->mtype)) {
		if (col->max_prefix == 0) {
			spatial_status = SPATIAL_ONLY;
		} else {
			/* Any regular index on a geometry column
			should have a prefix. */
			spatial_status = SPATIAL_MIXED;
		}
	}

	return(spatial_status);
}

#ifndef UNIV_NONINL
#include "dict0mem.ic"
#endif

#endif /* dict0mem_h */

Youez - 2016 - github.com/yon3zu
LinuXploit