403Webshell
Server IP : 104.21.38.3  /  Your IP : 162.158.108.97
Web Server : Apache
System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64
User : www ( 1000)
PHP Version : 7.4.33
Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : OFF  |  Sudo : ON  |  Pkexec : ON
Directory :  /www/server/mysql/src/storage/innobase/row/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /www/server/mysql/src/storage/innobase/row/row0row.cc
/*****************************************************************************

Copyright (c) 1996, 2023, Oracle and/or its affiliates.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.

This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation.  The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License, version 2.0, for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA

*****************************************************************************/

/**************************************************//**
@file row/row0row.cc
General row routines

Created 4/20/1996 Heikki Tuuri
*******************************************************/

#include "ha_prototypes.h"

#include "row0row.h"

#ifdef UNIV_NONINL
#include "row0row.ic"
#endif

#include "data0type.h"
#include "dict0dict.h"
#include "dict0boot.h"
#include "btr0btr.h"
#include "mach0data.h"
#include "trx0rseg.h"
#include "trx0trx.h"
#include "trx0roll.h"
#include "trx0undo.h"
#include "trx0purge.h"
#include "trx0rec.h"
#include "que0que.h"
#include "row0ext.h"
#include "row0upd.h"
#include "rem0cmp.h"
#include "read0read.h"
#include "ut0mem.h"
#include "gis0geo.h"
#include "row0mysql.h"

/*****************************************************************//**
When an insert or purge to a table is performed, this function builds
the entry to be inserted into or purged from an index on the table.
@return index entry which should be inserted or purged
@retval NULL if the externally stored columns in the clustered index record
are unavailable and ext != NULL, or row is missing some needed columns. */
dtuple_t*
row_build_index_entry_low(
/*======================*/
	const dtuple_t*		row,	/*!< in: row which should be
					inserted or purged */
	const row_ext_t*	ext,	/*!< in: externally stored column
					prefixes, or NULL */
	dict_index_t*		index,	/*!< in: index on the table */
	mem_heap_t*		heap,	/*!< in: memory heap from which
					the memory for the index entry
					is allocated */
	ulint			flag)	/*!< in: ROW_BUILD_NORMAL,
					ROW_BUILD_FOR_PURGE
                                        or ROW_BUILD_FOR_UNDO */
{
	dtuple_t*	entry;
	ulint		entry_len;
	ulint		i;
	ulint		num_v = 0;

	entry_len = dict_index_get_n_fields(index);

	if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) {
		num_v = dict_table_get_n_v_cols(index->table);
		entry = dtuple_create_with_vcol(heap, entry_len, num_v);
	} else {
		entry = dtuple_create(heap, entry_len);
	}

	if (dict_index_is_ibuf(index)) {
		dtuple_set_n_fields_cmp(entry, entry_len);
		/* There may only be externally stored columns
		in a clustered index B-tree of a user table. */
		ut_a(!ext);
	} else {
		dtuple_set_n_fields_cmp(
			entry, dict_index_get_n_unique_in_tree(index));
	}

	for (i = 0; i < entry_len + num_v; i++) {
		const dict_field_t*	ind_field = NULL;
		const dict_col_t*	col;
		ulint			col_no = 0;
		dfield_t*		dfield;
		dfield_t*		dfield2;
		ulint			len;

		if (i >= entry_len) {
			/* This is to insert new rows to cluster index */
			ut_ad(dict_index_is_clust(index)
			      && flag == ROW_BUILD_FOR_INSERT);
			dfield = dtuple_get_nth_v_field(entry, i - entry_len);
			col = &dict_table_get_nth_v_col(
				index->table, i - entry_len)->m_col;

		} else {
			ind_field = dict_index_get_nth_field(index, i);
			col = ind_field->col;
			col_no = dict_col_get_no(col);
			dfield = dtuple_get_nth_field(entry, i);
		}
#if DATA_MISSING != 0
# error "DATA_MISSING != 0"
#endif

		if (dict_col_is_virtual(col)) {
			const dict_v_col_t*	v_col
				= reinterpret_cast<const dict_v_col_t*>(col);

			ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row));
			dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos);

			ut_ad(dfield_is_null(dfield2) || dfield2->data);
		} else {
			dfield2 = dtuple_get_nth_field(row, col_no);
			ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING
			      || (!(dfield_get_type(dfield2)->prtype
				    & DATA_VIRTUAL)));
		}

		if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype
				  == DATA_MISSING)) {
			/* The field has not been initialized in the row.
			This should be from trx_undo_rec_get_partial_row(). */
			return(NULL);
		}

#ifdef UNIV_DEBUG
		if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL
		    && dict_index_is_clust(index)) {
			ut_ad(flag == ROW_BUILD_FOR_INSERT);
		}
#endif /* UNIV_DEBUG */

		/* Special handle spatial index, set the first field
		which is for store MBR. */
		if (dict_index_is_spatial(index) && i == 0) {
			double*			mbr;

			dfield_copy(dfield, dfield2);
			dfield->type.prtype |= DATA_GIS_MBR;

			/* Allocate memory for mbr field */
			ulint mbr_len = DATA_MBR_LEN;
			mbr = static_cast<double*>(mem_heap_alloc(heap, mbr_len));

			/* Set mbr field data. */
			dfield_set_data(dfield, mbr, mbr_len);

			if (dfield2->data) {
				uchar*	dptr = NULL;
				ulint	dlen = 0;
				ulint	flen = 0;
				double	tmp_mbr[SPDIMS * 2];
				mem_heap_t*	temp_heap = NULL;

				if (dfield_is_ext(dfield2)) {
					if (flag == ROW_BUILD_FOR_PURGE) {
						byte*	ptr = NULL;

						spatial_status_t spatial_status;
						spatial_status =
							dfield_get_spatial_status(
								dfield2);

						switch (spatial_status) {
						case SPATIAL_ONLY:
						ptr = static_cast<byte*>(
							dfield_get_data(
								dfield2));
						ut_ad(dfield_get_len(dfield2)
						      == DATA_MBR_LEN);
						break;

						case SPATIAL_MIXED:
						ptr = static_cast<byte*>(
							dfield_get_data(
								dfield2))
							+ dfield_get_len(
								dfield2);
						break;

						case SPATIAL_NONE:
						/* Undo record is logged before
						spatial index is created.*/
						return(NULL);

						case SPATIAL_UNKNOWN:
						ut_ad(0);
						}

						memcpy(mbr, ptr, DATA_MBR_LEN);
						continue;
					}

					if (flag == ROW_BUILD_FOR_UNDO
					    && dict_table_get_format(index->table)
						>= UNIV_FORMAT_B) {
						/* For build entry for undo, and
						the table is Barrcuda, we need
						to skip the prefix data. */
						flen = BTR_EXTERN_FIELD_REF_SIZE;
						ut_ad(dfield_get_len(dfield2) >=
						      BTR_EXTERN_FIELD_REF_SIZE);
						dptr = static_cast<byte*>(
							dfield_get_data(dfield2))
							+ dfield_get_len(dfield2)
							- BTR_EXTERN_FIELD_REF_SIZE;
					} else {
						flen = dfield_get_len(dfield2);
						dptr = static_cast<byte*>(
							dfield_get_data(dfield2));
					}

					temp_heap = mem_heap_create(1000);

					const page_size_t	page_size
						= (ext != NULL)
						? ext->page_size
						: dict_table_page_size(
							index->table);

					dptr = btr_copy_externally_stored_field(
						&dlen, dptr,
						page_size,
						flen,
						temp_heap);
				} else {
					dptr = static_cast<uchar*>(
						dfield_get_data(dfield2));
					dlen = dfield_get_len(dfield2);

				}

				if (dlen <= GEO_DATA_HEADER_SIZE) {
					for (uint i = 0; i < SPDIMS; ++i) {
						tmp_mbr[i * 2] = DBL_MAX;
						tmp_mbr[i * 2 + 1] = -DBL_MAX;
					}
				} else {
					rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE,
							   static_cast<uint>(dlen
							   - GEO_DATA_HEADER_SIZE),
							   SPDIMS, tmp_mbr);
				}
				dfield_write_mbr(dfield, tmp_mbr);
				if (temp_heap) {
					mem_heap_free(temp_heap);
				}
			}
			continue;
		}

		len = dfield_get_len(dfield2);

		dfield_copy(dfield, dfield2);

		if (dfield_is_null(dfield)) {
			continue;
		}


		if ((!ind_field || ind_field->prefix_len == 0)
		    && (!dfield_is_ext(dfield)
			|| dict_index_is_clust(index))) {
			/* The dfield_copy() above suffices for
			columns that are stored in-page, or for
			clustered index record columns that are not
			part of a column prefix in the PRIMARY KEY,
			or for virtaul columns in cluster index record. */
			continue;
		}

		/* If the column is stored externally (off-page) in
		the clustered index, it must be an ordering field in
		the secondary index.  In the Antelope format, only
		prefix-indexed columns may be stored off-page in the
		clustered index record. In the Barracuda format, also
		fully indexed long CHAR or VARCHAR columns may be
		stored off-page. */
		ut_ad(col->ord_part);

		if (ext && !dict_col_is_virtual(col)) {

			/* See if the column is stored externally. */
			const byte*	buf = row_ext_lookup(ext, col_no,
							     &len);
			if (UNIV_LIKELY_NULL(buf)) {
				if (UNIV_UNLIKELY(buf == field_ref_zero)) {
					return(NULL);
				}
				dfield_set_data(dfield, buf, len);
			}

			if (ind_field->prefix_len == 0) {
				/* In the Barracuda format
				(ROW_FORMAT=DYNAMIC or
				ROW_FORMAT=COMPRESSED), we can have a
				secondary index on an entire column
				that is stored off-page in the
				clustered index. As this is not a
				prefix index (prefix_len == 0),
				include the entire off-page column in
				the secondary index record. */
				continue;
			}
		} else if (dfield_is_ext(dfield)) {
			/* This table is either in Antelope format
			(ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT)
			or a purge record where the ordered part of
			the field is not external.
			In Antelope, the maximum column prefix
			index length is 767 bytes, and the clustered
			index record contains a 768-byte prefix of
			each off-page column. */
			ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE);
			len -= BTR_EXTERN_FIELD_REF_SIZE;
			dfield_set_len(dfield, len);
		}

		/* If a column prefix index, take only the prefix. */
		if (ind_field->prefix_len) {
			len = dtype_get_at_most_n_mbchars(
				col->prtype, col->mbminmaxlen,
				ind_field->prefix_len, len,
				static_cast<char*>(dfield_get_data(dfield)));
			dfield_set_len(dfield, len);
		}
	}

	return(entry);
}

/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index, with possible indexing on ongoing
addition of new virtual columns.
@param[in]	type		ROW_COPY_POINTERS or ROW_COPY_DATA;
@param[in]	index		clustered index
@param[in]	rec		record in the clustered index
@param[in]	offsets		rec_get_offsets(rec,index) or NULL
@param[in]	col_table	table, to check which
				externally stored columns
				occur in the ordering columns
				of an index, or NULL if
				index->table should be
				consulted instead
@param[in]	add_cols	default values of added columns, or NULL
@param[in]	add_v		new virtual columns added
				along with new indexes
@param[in]	col_map		mapping of old column
				numbers to new ones, or NULL
@param[in]	ext		cache of externally stored column
				prefixes, or NULL
@param[in]	heap		memory heap from which
				the memory needed is allocated
@return own: row built; */
static inline
dtuple_t*
row_build_low(
	ulint			type,
	const dict_index_t*	index,
	const rec_t*		rec,
	const ulint*		offsets,
	const dict_table_t*	col_table,
	const dtuple_t*		add_cols,
	const dict_add_v_col_t*	add_v,
	const ulint*		col_map,
	row_ext_t**		ext,
	mem_heap_t*		heap)
{
	const byte*		copy;
	dtuple_t*		row;
	ulint			n_ext_cols;
	ulint*			ext_cols	= NULL; /* remove warning */
	ulint			len;
	byte*			buf;
	ulint			j;
	mem_heap_t*		tmp_heap	= NULL;
	ulint			offsets_[REC_OFFS_NORMAL_SIZE];
	rec_offs_init(offsets_);

	ut_ad(index != NULL);
	ut_ad(rec != NULL);
	ut_ad(heap != NULL);
	ut_ad(dict_index_is_clust(index));
	ut_ad(!trx_sys_mutex_own());
	ut_ad(!col_map || col_table);

	if (!offsets) {
		offsets = rec_get_offsets(rec, index, offsets_,
					  ULINT_UNDEFINED, &tmp_heap);
	} else {
		ut_ad(rec_offs_validate(rec, index, offsets));
	}

#if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG
	/* Some blob refs can be NULL during crash recovery before
	trx_rollback_active() has completed execution, or when a concurrently
	executing insert or update has committed the B-tree mini-transaction
	but has not yet managed to restore the cursor position for writing
	the big_rec. Note that the mini-transaction can be committed multiple
	times, and the cursor restore can happen multiple times for single
	insert or update statement.  */
	ut_a(!rec_offs_any_null_extern(rec, offsets)
	     || trx_rw_is_active(row_get_rec_trx_id(rec, index, offsets),
						    NULL, false));
#endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */

	if (type != ROW_COPY_POINTERS) {
		/* Take a copy of rec to heap */
		buf = static_cast<byte*>(
			mem_heap_alloc(heap, rec_offs_size(offsets)));

		copy = rec_copy(buf, rec, offsets);
	} else {
		copy = rec;
	}

	n_ext_cols = rec_offs_n_extern(offsets);
	if (n_ext_cols) {
		ext_cols = static_cast<ulint*>(
			mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols));
	}

	/* Avoid a debug assertion in rec_offs_validate(). */
	rec_offs_make_valid(copy, index, const_cast<ulint*>(offsets));

	if (!col_table) {
		ut_ad(!col_map);
		ut_ad(!add_cols);
		col_table = index->table;
	}

	if (add_cols) {
		ut_ad(col_map);
		row = dtuple_copy(add_cols, heap);
		/* dict_table_copy_types() would set the fields to NULL */
		for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) {
			dict_col_copy_type(
				dict_table_get_nth_col(col_table, i),
				dfield_get_type(dtuple_get_nth_field(row, i)));
		}
	} else if (add_v != NULL) {
		row = dtuple_create_with_vcol(
			heap, dict_table_get_n_cols(col_table),
			dict_table_get_n_v_cols(col_table) + add_v->n_v_col);
		dict_table_copy_types(row, col_table);

		for (ulint i = 0; i < add_v->n_v_col; i++) {
			dict_col_copy_type(
				&add_v->v_col[i].m_col,
				dfield_get_type(dtuple_get_nth_v_field(
					row, i + col_table->n_v_def)));
		}
	} else {
		row = dtuple_create_with_vcol(
			heap, dict_table_get_n_cols(col_table),
			dict_table_get_n_v_cols(col_table));
		dict_table_copy_types(row, col_table);
	}

	dtuple_set_info_bits(row, rec_get_info_bits(
				     copy, rec_offs_comp(offsets)));

	j = 0;

	for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) {
		const dict_field_t*	ind_field
			= dict_index_get_nth_field(index, i);

		if (ind_field->prefix_len) {
			/* Column prefixes can only occur in key
			fields, which cannot be stored externally. For
			a column prefix, there should also be the full
			field in the clustered index tuple. The row
			tuple comprises full fields, not prefixes. */
			ut_ad(!rec_offs_nth_extern(offsets, i));
			continue;
		}

		const dict_col_t*	col
			= dict_field_get_col(ind_field);
		ulint			col_no
			= dict_col_get_no(col);

		if (col_map) {
			col_no = col_map[col_no];

			if (col_no == ULINT_UNDEFINED) {
				/* dropped column */
				continue;
			}
		}

		dfield_t*	dfield = dtuple_get_nth_field(row, col_no);

		const byte*	field = rec_get_nth_field(
			copy, offsets, i, &len);

		dfield_set_data(dfield, field, len);

		if (rec_offs_nth_extern(offsets, i)) {
			dfield_set_ext(dfield);

			col = dict_table_get_nth_col(col_table, col_no);

			if (col->ord_part) {
				/* We will have to fetch prefixes of
				externally stored columns that are
				referenced by column prefixes. */
				ext_cols[j++] = col_no;
			}
		}
	}

	rec_offs_make_valid(rec, index, const_cast<ulint*>(offsets));

	ut_ad(dtuple_check_typed(row));

	if (!ext) {
		/* REDUNDANT and COMPACT formats store a local
		768-byte prefix of each externally stored
		column. No cache is needed.

		During online table rebuild,
		row_log_table_apply_delete_low()
		may use a cache that was set up by
		row_log_table_delete(). */

	} else if (j) {
		*ext = row_ext_create(j, ext_cols, index->table->flags, row,
				      heap);
	} else {
		*ext = NULL;
	}

	if (tmp_heap) {
		mem_heap_free(tmp_heap);
	}

	return(row);
}


/*******************************************************************//**
An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index.
@return own: row built; see the NOTE below! */
dtuple_t*
row_build(
/*======*/
	ulint			type,	/*!< in: ROW_COPY_POINTERS or
					ROW_COPY_DATA; the latter
					copies also the data fields to
					heap while the first only
					places pointers to data fields
					on the index page, and thus is
					more efficient */
	const dict_index_t*	index,	/*!< in: clustered index */
	const rec_t*		rec,	/*!< in: record in the clustered
					index; NOTE: in the case
					ROW_COPY_POINTERS the data
					fields in the row will point
					directly into this record,
					therefore, the buffer page of
					this record must be at least
					s-latched and the latch held
					as long as the row dtuple is used! */
	const ulint*		offsets,/*!< in: rec_get_offsets(rec,index)
					or NULL, in which case this function
					will invoke rec_get_offsets() */
	const dict_table_t*	col_table,
					/*!< in: table, to check which
					externally stored columns
					occur in the ordering columns
					of an index, or NULL if
					index->table should be
					consulted instead */
	const dtuple_t*		add_cols,
					/*!< in: default values of
					added columns, or NULL */
	const ulint*		col_map,/*!< in: mapping of old column
					numbers to new ones, or NULL */
	row_ext_t**		ext,	/*!< out, own: cache of
					externally stored column
					prefixes, or NULL */
	mem_heap_t*		heap)	/*!< in: memory heap from which
					 the memory needed is allocated */
{
	return(row_build_low(type, index, rec, offsets, col_table,
			     add_cols, NULL, col_map, ext, heap));
}

/** An inverse function to row_build_index_entry. Builds a row from a
record in a clustered index, with possible indexing on ongoing
addition of new virtual columns.
@param[in]	type		ROW_COPY_POINTERS or ROW_COPY_DATA;
@param[in]	index		clustered index
@param[in]	rec		record in the clustered index
@param[in]	offsets		rec_get_offsets(rec,index) or NULL
@param[in]	col_table	table, to check which
				externally stored columns
				occur in the ordering columns
				of an index, or NULL if
				index->table should be
				consulted instead
@param[in]	add_cols	default values of added columns, or NULL
@param[in]	add_v		new virtual columns added
				along with new indexes
@param[in]	col_map		mapping of old column
				numbers to new ones, or NULL
@param[in]	ext		cache of externally stored column
				prefixes, or NULL
@param[in]	heap		memory heap from which
				the memory needed is allocated
@return own: row built; */
dtuple_t*
row_build_w_add_vcol(
	ulint			type,
	const dict_index_t*	index,
	const rec_t*		rec,
	const ulint*		offsets,
	const dict_table_t*	col_table,
	const dtuple_t*		add_cols,
	const dict_add_v_col_t*	add_v,
	const ulint*		col_map,
	row_ext_t**		ext,
	mem_heap_t*		heap)
{
	return(row_build_low(type, index, rec, offsets, col_table,
			     add_cols, add_v, col_map, ext, heap));
}

/*******************************************************************//**
Converts an index record to a typed data tuple.
@return index entry built; does not set info_bits, and the data fields
in the entry will point directly to rec */
dtuple_t*
row_rec_to_index_entry_low(
/*=======================*/
	const rec_t*		rec,	/*!< in: record in the index */
	const dict_index_t*	index,	/*!< in: index */
	const ulint*		offsets,/*!< in: rec_get_offsets(rec, index) */
	ulint*			n_ext,	/*!< out: number of externally
					stored columns */
	mem_heap_t*		heap)	/*!< in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*	entry;
	dfield_t*	dfield;
	ulint		i;
	const byte*	field;
	ulint		len;
	ulint		rec_len;

	ut_ad(rec != NULL);
	ut_ad(heap != NULL);
	ut_ad(index != NULL);

	/* Because this function may be invoked by row0merge.cc
	on a record whose header is in different format, the check
	rec_offs_validate(rec, index, offsets) must be avoided here. */
	ut_ad(n_ext);
	*n_ext = 0;

	rec_len = rec_offs_n_fields(offsets);

	entry = dtuple_create(heap, rec_len);

	dtuple_set_n_fields_cmp(entry,
				dict_index_get_n_unique_in_tree(index));
	ut_ad(rec_len == dict_index_get_n_fields(index)
	      /* a record for older SYS_INDEXES table
	      (missing merge_threshold column) is acceptable. */
	      || (index->table->id == DICT_INDEXES_ID
		  && rec_len == dict_index_get_n_fields(index) - 1));

	dict_index_copy_types(entry, index, rec_len);

	for (i = 0; i < rec_len; i++) {

		dfield = dtuple_get_nth_field(entry, i);
		field = rec_get_nth_field(rec, offsets, i, &len);

		dfield_set_data(dfield, field, len);

		if (rec_offs_nth_extern(offsets, i)) {
			dfield_set_ext(dfield);
			(*n_ext)++;
		}
	}

	ut_ad(dtuple_check_typed(entry));

	return(entry);
}

/*******************************************************************//**
Converts an index record to a typed data tuple. NOTE that externally
stored (often big) fields are NOT copied to heap.
@return own: index entry built */
dtuple_t*
row_rec_to_index_entry(
/*===================*/
	const rec_t*		rec,	/*!< in: record in the index */
	const dict_index_t*	index,	/*!< in: index */
	const ulint*		offsets,/*!< in: rec_get_offsets(rec) */
	ulint*			n_ext,	/*!< out: number of externally
					stored columns */
	mem_heap_t*		heap)	/*!< in: memory heap from which
					the memory needed is allocated */
{
	dtuple_t*	entry;
	byte*		buf;
	const rec_t*	copy_rec;

	ut_ad(rec != NULL);
	ut_ad(heap != NULL);
	ut_ad(index != NULL);
	ut_ad(rec_offs_validate(rec, index, offsets));

	/* Take a copy of rec to heap */
	buf = static_cast<byte*>(
		mem_heap_alloc(heap, rec_offs_size(offsets)));

	copy_rec = rec_copy(buf, rec, offsets);

	rec_offs_make_valid(copy_rec, index, const_cast<ulint*>(offsets));
	entry = row_rec_to_index_entry_low(
		copy_rec, index, offsets, n_ext, heap);
	rec_offs_make_valid(rec, index, const_cast<ulint*>(offsets));

	dtuple_set_info_bits(entry,
			     rec_get_info_bits(rec, rec_offs_comp(offsets)));

	return(entry);
}

/*******************************************************************//**
Builds from a secondary index record a row reference with which we can
search the clustered index record.
@return own: row reference built; see the NOTE below! */
dtuple_t*
row_build_row_ref(
/*==============*/
	ulint		type,	/*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS:
				the former copies also the data fields to
				heap, whereas the latter only places pointers
				to data fields on the index page */
	dict_index_t*	index,	/*!< in: secondary index */
	const rec_t*	rec,	/*!< in: record in the index;
				NOTE: in the case ROW_COPY_POINTERS
				the data fields in the row will point
				directly into this record, therefore,
				the buffer page of this record must be
				at least s-latched and the latch held
				as long as the row reference is used! */
	mem_heap_t*	heap)	/*!< in: memory heap from which the memory
				needed is allocated */
{
	dict_table_t*	table;
	dict_index_t*	clust_index;
	dfield_t*	dfield;
	dtuple_t*	ref;
	const byte*	field;
	ulint		len;
	ulint		ref_len;
	ulint		pos;
	byte*		buf;
	ulint		clust_col_prefix_len;
	ulint		i;
	mem_heap_t*	tmp_heap	= NULL;
	ulint		offsets_[REC_OFFS_NORMAL_SIZE];
	ulint*		offsets		= offsets_;
	rec_offs_init(offsets_);

	ut_ad(index != NULL);
	ut_ad(rec != NULL);
	ut_ad(heap != NULL);
	ut_ad(!dict_index_is_clust(index));

	offsets = rec_get_offsets(rec, index, offsets,
				  ULINT_UNDEFINED, &tmp_heap);
	/* Secondary indexes must not contain externally stored columns. */
	ut_ad(!rec_offs_any_extern(offsets));

	if (type == ROW_COPY_DATA) {
		/* Take a copy of rec to heap */

		buf = static_cast<byte*>(
			mem_heap_alloc(heap, rec_offs_size(offsets)));

		rec = rec_copy(buf, rec, offsets);
		/* Avoid a debug assertion in rec_offs_validate(). */
		rec_offs_make_valid(rec, index, offsets);
	}

	table = index->table;

	clust_index = dict_table_get_first_index(table);

	ref_len = dict_index_get_n_unique(clust_index);

	ref = dtuple_create(heap, ref_len);

	dict_index_copy_types(ref, clust_index, ref_len);

	for (i = 0; i < ref_len; i++) {
		dfield = dtuple_get_nth_field(ref, i);

		pos = dict_index_get_nth_field_pos(index, clust_index, i);

		ut_a(pos != ULINT_UNDEFINED);

		field = rec_get_nth_field(rec, offsets, pos, &len);

		dfield_set_data(dfield, field, len);

		/* If the primary key contains a column prefix, then the
		secondary index may contain a longer prefix of the same
		column, or the full column, and we must adjust the length
		accordingly. */

		clust_col_prefix_len = dict_index_get_nth_field(
			clust_index, i)->prefix_len;

		if (clust_col_prefix_len > 0) {
			if (len != UNIV_SQL_NULL) {

				const dtype_t*	dtype
					= dfield_get_type(dfield);

				dfield_set_len(dfield,
					       dtype_get_at_most_n_mbchars(
						       dtype->prtype,
						       dtype->mbminmaxlen,
						       clust_col_prefix_len,
						       len, (char*) field));
			}
		}
	}

	ut_ad(dtuple_check_typed(ref));
	if (tmp_heap) {
		mem_heap_free(tmp_heap);
	}

	return(ref);
}

/*******************************************************************//**
Builds from a secondary index record a row reference with which we can
search the clustered index record. */
void
row_build_row_ref_in_tuple(
/*=======================*/
	dtuple_t*		ref,	/*!< in/out: row reference built;
					see the NOTE below! */
	const rec_t*		rec,	/*!< in: record in the index;
					NOTE: the data fields in ref
					will point directly into this
					record, therefore, the buffer
					page of this record must be at
					least s-latched and the latch
					held as long as the row
					reference is used! */
	const dict_index_t*	index,	/*!< in: secondary index */
	ulint*			offsets,/*!< in: rec_get_offsets(rec, index)
					or NULL */
	trx_t*			trx)	/*!< in: transaction */
{
	const dict_index_t*	clust_index;
	dfield_t*		dfield;
	const byte*		field;
	ulint			len;
	ulint			ref_len;
	ulint			pos;
	ulint			clust_col_prefix_len;
	ulint			i;
	mem_heap_t*		heap		= NULL;
	ulint			offsets_[REC_OFFS_NORMAL_SIZE];
	rec_offs_init(offsets_);

	ut_a(ref);
	ut_a(index);
	ut_a(rec);
	ut_ad(!dict_index_is_clust(index));
	ut_a(index->table);

	clust_index = dict_table_get_first_index(index->table);
	ut_ad(clust_index);

	if (!offsets) {
		offsets = rec_get_offsets(rec, index, offsets_,
					  ULINT_UNDEFINED, &heap);
	} else {
		ut_ad(rec_offs_validate(rec, index, offsets));
	}

	/* Secondary indexes must not contain externally stored columns. */
	ut_ad(!rec_offs_any_extern(offsets));
	ref_len = dict_index_get_n_unique(clust_index);

	ut_ad(ref_len == dtuple_get_n_fields(ref));

	dict_index_copy_types(ref, clust_index, ref_len);

	for (i = 0; i < ref_len; i++) {
		dfield = dtuple_get_nth_field(ref, i);

		pos = dict_index_get_nth_field_pos(index, clust_index, i);

		ut_a(pos != ULINT_UNDEFINED);

		field = rec_get_nth_field(rec, offsets, pos, &len);

		dfield_set_data(dfield, field, len);

		/* If the primary key contains a column prefix, then the
		secondary index may contain a longer prefix of the same
		column, or the full column, and we must adjust the length
		accordingly. */

		clust_col_prefix_len = dict_index_get_nth_field(
			clust_index, i)->prefix_len;

		if (clust_col_prefix_len > 0) {
			if (len != UNIV_SQL_NULL) {

				const dtype_t*	dtype
					= dfield_get_type(dfield);

				dfield_set_len(dfield,
					       dtype_get_at_most_n_mbchars(
						       dtype->prtype,
						       dtype->mbminmaxlen,
						       clust_col_prefix_len,
						       len, (char*) field));
			}
		}
	}

	ut_ad(dtuple_check_typed(ref));
	if (UNIV_LIKELY_NULL(heap)) {
		mem_heap_free(heap);
	}
}

/***************************************************************//**
Searches the clustered index record for a row, if we have the row reference.
@return TRUE if found */
ibool
row_search_on_row_ref(
/*==================*/
	btr_pcur_t*		pcur,	/*!< out: persistent cursor, which must
					be closed by the caller */
	ulint			mode,	/*!< in: BTR_MODIFY_LEAF, ... */
	const dict_table_t*	table,	/*!< in: table */
	const dtuple_t*		ref,	/*!< in: row reference */
	mtr_t*			mtr)	/*!< in/out: mtr */
{
	ulint		low_match;
	rec_t*		rec;
	dict_index_t*	index;

	ut_ad(dtuple_check_typed(ref));

	index = dict_table_get_first_index(table);

	ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index));

	btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr);

	low_match = btr_pcur_get_low_match(pcur);

	rec = btr_pcur_get_rec(pcur);

	if (page_rec_is_infimum(rec)) {

		return(FALSE);
	}

	if (low_match != dtuple_get_n_fields(ref)) {

		return(FALSE);
	}

	return(TRUE);
}

/*********************************************************************//**
Fetches the clustered index record for a secondary index record. The latches
on the secondary index record are preserved.
@return record or NULL, if no record found */
rec_t*
row_get_clust_rec(
/*==============*/
	ulint		mode,	/*!< in: BTR_MODIFY_LEAF, ... */
	const rec_t*	rec,	/*!< in: record in a secondary index */
	dict_index_t*	index,	/*!< in: secondary index */
	dict_index_t**	clust_index,/*!< out: clustered index */
	mtr_t*		mtr)	/*!< in: mtr */
{
	mem_heap_t*	heap;
	dtuple_t*	ref;
	dict_table_t*	table;
	btr_pcur_t	pcur;
	ibool		found;
	rec_t*		clust_rec;

	ut_ad(!dict_index_is_clust(index));

	table = index->table;

	heap = mem_heap_create(256);

	ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap);

	found = row_search_on_row_ref(&pcur, mode, table, ref, mtr);

	clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL;

	mem_heap_free(heap);

	btr_pcur_close(&pcur);

	*clust_index = dict_table_get_first_index(table);

	return(clust_rec);
}

/***************************************************************//**
Searches an index record.
@return whether the record was found or buffered */
enum row_search_result
row_search_index_entry(
/*===================*/
	dict_index_t*	index,	/*!< in: index */
	const dtuple_t*	entry,	/*!< in: index entry */
	ulint		mode,	/*!< in: BTR_MODIFY_LEAF, ... */
	btr_pcur_t*	pcur,	/*!< in/out: persistent cursor, which must
				be closed by the caller */
	mtr_t*		mtr)	/*!< in: mtr */
{
	ulint	n_fields;
	ulint	low_match;
	rec_t*	rec;

	ut_ad(dtuple_check_typed(entry));

	if (dict_index_is_spatial(index)) {
		ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE);
		rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE,
			      mode, pcur, mtr);
	} else {
		btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr);
	}

	switch (btr_pcur_get_btr_cur(pcur)->flag) {
	case BTR_CUR_DELETE_REF:
		ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index));
		return(ROW_NOT_DELETED_REF);

	case BTR_CUR_DEL_MARK_IBUF:
	case BTR_CUR_DELETE_IBUF:
	case BTR_CUR_INSERT_TO_IBUF:
		return(ROW_BUFFERED);

	case BTR_CUR_HASH:
	case BTR_CUR_HASH_FAIL:
	case BTR_CUR_BINARY:
		break;
	}

	low_match = btr_pcur_get_low_match(pcur);

	rec = btr_pcur_get_rec(pcur);

	n_fields = dtuple_get_n_fields(entry);

	if (page_rec_is_infimum(rec)) {

		return(ROW_NOT_FOUND);
	} else if (low_match != n_fields) {

		return(ROW_NOT_FOUND);
	}

	return(ROW_FOUND);
}

/*******************************************************************//**
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_INT using "prtype" and writes the result to "buf".
If the data is in unknown format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0').
@return number of bytes that were written */
static
ulint
row_raw_format_int(
/*===============*/
	const char*	data,		/*!< in: raw data */
	ulint		data_len,	/*!< in: raw data length
					in bytes */
	ulint		prtype,		/*!< in: precise type */
	char*		buf,		/*!< out: output buffer */
	ulint		buf_size,	/*!< in: output buffer size
					in bytes */
	ibool*		format_in_hex)	/*!< out: should the data be
					formated in hex */
{
	ulint	ret;

	if (data_len <= sizeof(ib_uint64_t)) {

		ib_uint64_t	value;
		ibool		unsigned_type = prtype & DATA_UNSIGNED;

		value = mach_read_int_type(
			(const byte*) data, data_len, unsigned_type);

		ret = ut_snprintf(
			buf, buf_size,
			unsigned_type ? UINT64PF : "%" PRId64, value) + 1;
	} else {

		*format_in_hex = TRUE;
		ret = 0;
	}

	return(ut_min(ret, buf_size));
}

/*******************************************************************//**
Formats the raw data in "data" (in InnoDB on-disk format) that is of
type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the
result to "buf".
If the data is in binary format, then nothing is written to "buf",
0 is returned and "format_in_hex" is set to TRUE, otherwise
"format_in_hex" is left untouched.
Not more than "buf_size" bytes are written to "buf".
The result is always '\0'-terminated (provided buf_size > 0) and the
number of bytes that were written to "buf" is returned (including the
terminating '\0').
@return number of bytes that were written */
static
ulint
row_raw_format_str(
/*===============*/
	const char*	data,		/*!< in: raw data */
	ulint		data_len,	/*!< in: raw data length
					in bytes */
	ulint		prtype,		/*!< in: precise type */
	char*		buf,		/*!< out: output buffer */
	ulint		buf_size,	/*!< in: output buffer size
					in bytes */
	ibool*		format_in_hex)	/*!< out: should the data be
					formated in hex */
{
	ulint	charset_coll;

	if (buf_size == 0) {

		return(0);
	}

	/* we assume system_charset_info is UTF-8 */

	charset_coll = dtype_get_charset_coll(prtype);

	if (UNIV_LIKELY(dtype_is_utf8(prtype))) {

		return(ut_str_sql_format(data, data_len, buf, buf_size));
	}
	/* else */

	if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) {

		*format_in_hex = TRUE;
		return(0);
	}
	/* else */

	return(innobase_raw_format(data, data_len, charset_coll,
					  buf, buf_size));
}

/*******************************************************************//**
Formats the raw data in "data" (in InnoDB on-disk format) using
"dict_field" and writes the result to "buf".
Not more than "buf_size" bytes are written to "buf".
The result is always NUL-terminated (provided buf_size is positive) and the
number of bytes that were written to "buf" is returned (including the
terminating NUL).
@return number of bytes that were written */
ulint
row_raw_format(
/*===========*/
	const char*		data,		/*!< in: raw data */
	ulint			data_len,	/*!< in: raw data length
						in bytes */
	const dict_field_t*	dict_field,	/*!< in: index field */
	char*			buf,		/*!< out: output buffer */
	ulint			buf_size)	/*!< in: output buffer size
						in bytes */
{
	ulint	mtype;
	ulint	prtype;
	ulint	ret;
	ibool	format_in_hex;

	if (buf_size == 0) {

		return(0);
	}

	if (data_len == UNIV_SQL_NULL) {

		ret = ut_snprintf((char*) buf, buf_size, "NULL") + 1;

		return(ut_min(ret, buf_size));
	}

	mtype = dict_field->col->mtype;
	prtype = dict_field->col->prtype;

	format_in_hex = FALSE;

	switch (mtype) {
	case DATA_INT:

		ret = row_raw_format_int(data, data_len, prtype,
					 buf, buf_size, &format_in_hex);
		if (format_in_hex) {

			goto format_in_hex;
		}
		break;
	case DATA_CHAR:
	case DATA_VARCHAR:
	case DATA_MYSQL:
	case DATA_VARMYSQL:

		ret = row_raw_format_str(data, data_len, prtype,
					 buf, buf_size, &format_in_hex);
		if (format_in_hex) {

			goto format_in_hex;
		}

		break;
	/* XXX support more data types */
	default:
	format_in_hex:

		if (UNIV_LIKELY(buf_size > 2)) {

			memcpy(buf, "0x", 2);
			buf += 2;
			buf_size -= 2;
			ret = 2 + ut_raw_to_hex(data, data_len,
						buf, buf_size);
		} else {

			buf[0] = '\0';
			ret = 1;
		}
	}

	return(ret);
}

#ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT

#ifdef HAVE_UT_CHRONO_T

void
test_row_raw_format_int()
{
	ulint	ret;
	char	buf[128];
	ibool	format_in_hex;
	ulint	i;

#define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\
		      ret_expected, buf_expected, format_in_hex_expected)\
	do {\
		ibool	ok = TRUE;\
		ulint	i;\
		memset(buf, 'x', 10);\
		buf[10] = '\0';\
		format_in_hex = FALSE;\
		fprintf(stderr, "TESTING \"\\x");\
		for (i = 0; i < data_len; i++) {\
			fprintf(stderr, "%02hhX", data[i]);\
		}\
		fprintf(stderr, "\", %lu, %lu, %lu\n",\
                        (ulint) data_len, (ulint) prtype,\
			(ulint) buf_size);\
		ret = row_raw_format_int(data, data_len, prtype,\
					 buf, buf_size, &format_in_hex);\
		if (ret != ret_expected) {\
			fprintf(stderr, "expected ret %lu, got %lu\n",\
				(ulint) ret_expected, ret);\
			ok = FALSE;\
                }\
                if (strcmp((char*) buf, buf_expected) != 0) {\
                        fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\
                                buf_expected, buf);\
                        ok = FALSE;\
                }\
                if (format_in_hex != format_in_hex_expected) {\
                        fprintf(stderr, "expected format_in_hex %d, got %d\n",\
                                (int) format_in_hex_expected,\
				(int) format_in_hex);\
                        ok = FALSE;\
                }\
                if (ok) {\
                        fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\
                                (ulint) ret, buf, (int) format_in_hex);\
                } else {\
                        return;\
                }\
        } while (0)

#if 1
	/* min values for signed 1-8 byte integers */

	CALL_AND_TEST("\x00", 1, 0,
		      buf, sizeof(buf), 5, "-128", 0);

	CALL_AND_TEST("\x00\x00", 2, 0,
		      buf, sizeof(buf), 7, "-32768", 0);

	CALL_AND_TEST("\x00\x00\x00", 3, 0,
		      buf, sizeof(buf), 9, "-8388608", 0);

	CALL_AND_TEST("\x00\x00\x00\x00", 4, 0,
		      buf, sizeof(buf), 12, "-2147483648", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0,
		      buf, sizeof(buf), 14, "-549755813888", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0,
		      buf, sizeof(buf), 17, "-140737488355328", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0,
		      buf, sizeof(buf), 19, "-36028797018963968", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0,
		      buf, sizeof(buf), 21, "-9223372036854775808", 0);

	/* min values for unsigned 1-8 byte integers */

	CALL_AND_TEST("\x00", 1, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED,
		      buf, sizeof(buf), 2, "0", 0);

	/* max values for signed 1-8 byte integers */

	CALL_AND_TEST("\xFF", 1, 0,
		      buf, sizeof(buf), 4, "127", 0);

	CALL_AND_TEST("\xFF\xFF", 2, 0,
		      buf, sizeof(buf), 6, "32767", 0);

	CALL_AND_TEST("\xFF\xFF\xFF", 3, 0,
		      buf, sizeof(buf), 8, "8388607", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0,
		      buf, sizeof(buf), 11, "2147483647", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0,
		      buf, sizeof(buf), 13, "549755813887", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0,
		      buf, sizeof(buf), 16, "140737488355327", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0,
		      buf, sizeof(buf), 18, "36028797018963967", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0,
		      buf, sizeof(buf), 20, "9223372036854775807", 0);

	/* max values for unsigned 1-8 byte integers */

	CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED,
		      buf, sizeof(buf), 4, "255", 0);

	CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "65535", 0);

	CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED,
		      buf, sizeof(buf), 9, "16777215", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED,
		      buf, sizeof(buf), 11, "4294967295", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED,
		      buf, sizeof(buf), 14, "1099511627775", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED,
		      buf, sizeof(buf), 16, "281474976710655", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED,
		      buf, sizeof(buf), 18, "72057594037927935", 0);

	CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED,
		      buf, sizeof(buf), 21, "18446744073709551615", 0);

	/* some random values */

	CALL_AND_TEST("\x52", 1, 0,
		      buf, sizeof(buf), 4, "-46", 0);

	CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED,
		      buf, sizeof(buf), 3, "14", 0);

	CALL_AND_TEST("\x62\xCE", 2, 0,
		      buf, sizeof(buf), 6, "-7474", 0);

	CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "10710", 0);

	CALL_AND_TEST("\x7F\xFF\x90", 3, 0,
		      buf, sizeof(buf), 5, "-112", 0);

	CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "41238", 0);

	CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0,
		      buf, sizeof(buf), 3, "-9", 0);

	CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED,
		      buf, sizeof(buf), 3, "92", 0);

	CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0,
		      buf, sizeof(buf), 6, "-9117", 0);

	CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED,
		      buf, sizeof(buf), 6, "91234", 0);
#endif

	/* speed test */

	ut_chrono_t	ch(__func__);

	for (i = 0; i < 1000000; i++) {
		row_raw_format_int("\x23", 1,
				   0, buf, sizeof(buf),
				   &format_in_hex);
		row_raw_format_int("\x23", 1,
				   DATA_UNSIGNED, buf, sizeof(buf),
				   &format_in_hex);

		row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
				   0, buf, sizeof(buf),
				   &format_in_hex);
		row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8,
				   DATA_UNSIGNED, buf, sizeof(buf),
				   &format_in_hex);
	}
}

#endif /* HAVE_UT_CHRONO_T */

#endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */

Youez - 2016 - github.com/yon3zu
LinuXploit