Server IP : 104.21.38.3 / Your IP : 104.23.175.95 Web Server : Apache System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64 User : www ( 1000) PHP Version : 7.4.33 Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /www/server/mysql/src/storage/partition/ |
Upload File : |
/* Copyright (c) 2005, 2023, Oracle and/or its affiliates. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* This handler was developed by Mikael Ronstrom for version 5.1 of MySQL. It is an abstraction layer on top of other handlers such as MyISAM, InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also be handled by a storage engine. The current example of this is NDB Cluster that has internally handled partitioning. This have benefits in that many loops needed in the partition handler can be avoided. Partitioning has an inherent feature which in some cases is positive and in some cases is negative. It splits the data into chunks. This makes the data more manageable, queries can easily be parallelised towards the parts and indexes are split such that there are less levels in the index trees. The inherent disadvantage is that to use a split index one has to scan all index parts which is ok for large queries but for small queries it can be a disadvantage. Partitioning lays the foundation for more manageable databases that are extremely large. It does also lay the foundation for more parallelism in the execution of queries. This functionality will grow with later versions of MySQL. You can enable it in your buld by doing the following during your build process: ./configure --with-partition The partition is setup to use table locks. It implements an partition "SHARE" that is inserted into a hash by table name. You can use this to store information of state that any partition handler object will be able to see if it is using the same table. Please read the object definition in ha_partition.h before reading the rest if this file. */ /* This engine need server classes (like THD etc.) which only is defined if MYSQL_SERVER define is set! */ #define MYSQL_SERVER 1 #include "sql_parse.h" // append_file_to_dir #include "partition_info.h" // partition_info #include "ha_partition.h" #include "sql_table.h" // tablename_to_filename #include "key.h" // key_rec_cmp, field_unpack #include "sql_show.h" // append_identifier #include "sql_admin.h" // SQL_ADMIN_MSG_TEXT_SIZE #include "myisam.h" // TT_FOR_UPGRADE #include "sql_plugin.h" // plugin_unlock_list #include "log.h" // sql_print_error #include "debug_sync.h" #ifndef NDEBUG #include "sql_test.h" // print_where #endif #include "pfs_file_provider.h" #include "mysql/psi/mysql_file.h" using std::min; using std::max; /* First 4 bytes in the .par file is the number of 32-bit words in the file */ #define PAR_WORD_SIZE 4 /* offset to the .par file checksum */ #define PAR_CHECKSUM_OFFSET 4 /* offset to the total number of partitions */ #define PAR_NUM_PARTS_OFFSET 8 /* offset to the engines array */ #define PAR_ENGINES_OFFSET 12 #define PARTITION_ENABLED_TABLE_FLAGS (HA_FILE_BASED | \ HA_REC_NOT_IN_SEQ | \ HA_CAN_REPAIR) #define PARTITION_DISABLED_TABLE_FLAGS (HA_CAN_GEOMETRY | \ HA_CAN_FULLTEXT | \ HA_DUPLICATE_POS | \ HA_READ_BEFORE_WRITE_REMOVAL) static const char *ha_par_ext= ".par"; /** operation names for the enum_part_operation. */ static const char *opt_op_name[]= {"optimize", "analyze", "check", "repair", "assign_to_keycache", "preload_keys"}; /**************************************************************************** MODULE create/delete handler object ****************************************************************************/ static handler *partition_create_handler(handlerton *hton, TABLE_SHARE *share, MEM_ROOT *mem_root); static uint partition_flags(); static PSI_memory_key key_memory_ha_partition_file; static PSI_memory_key key_memory_ha_partition_engine_array; static PSI_memory_key key_memory_ha_partition_part_ids; #ifdef HAVE_PSI_INTERFACE static PSI_memory_info all_partition_memory[]= { { &key_memory_ha_partition_file, "ha_partition::file", 0}, { &key_memory_ha_partition_engine_array, "ha_partition::engine_array", 0}, { &key_memory_ha_partition_part_ids, "ha_partition::part_ids", 0} }; PSI_file_key key_file_ha_partition_par; static PSI_file_info all_partition_file[]= { { &key_file_ha_partition_par, "ha_partition::parfile", 0} }; static void init_partition_psi_keys(void) { const char* category= "partition"; int count; count= array_elements(all_partition_memory); mysql_memory_register(category, all_partition_memory, count); count= array_elements(all_partition_file); mysql_file_register(category, all_partition_file, count); } #endif /* HAVE_PSI_INTERFACE */ static int partition_initialize(void *p) { handlerton *partition_hton; partition_hton= (handlerton *)p; partition_hton->state= SHOW_OPTION_YES; partition_hton->db_type= DB_TYPE_PARTITION_DB; partition_hton->create= partition_create_handler; partition_hton->partition_flags= partition_flags; partition_hton->flags= HTON_NOT_USER_SELECTABLE | HTON_HIDDEN | HTON_TEMPORARY_NOT_SUPPORTED; #ifdef HAVE_PSI_INTERFACE init_partition_psi_keys(); #endif return 0; } Parts_share_refs::Parts_share_refs() : num_parts(0), ha_shares(NULL) {} Parts_share_refs::~Parts_share_refs() { uint i; if (ha_shares) { for (i= 0; i < num_parts; i++) if (ha_shares[i]) delete ha_shares[i]; delete [] ha_shares; } } bool Parts_share_refs::init(uint arg_num_parts) { assert(!num_parts && !ha_shares); num_parts= arg_num_parts; /* Allocate an array of Handler_share pointers */ ha_shares= new Handler_share *[num_parts]; if (!ha_shares) { num_parts= 0; return true; } memset(ha_shares, 0, sizeof(Handler_share*) * num_parts); return false; } Ha_partition_share::Ha_partition_share() : Partition_share(), partitions_share_refs(NULL) {} Ha_partition_share::~Ha_partition_share() { if (partitions_share_refs) delete partitions_share_refs; } /** Initialize and allocate space for partitions shares. @param num_parts Number of partitions to allocate storage for. @return Operation status. @retval true Failure (out of memory). @retval false Success. */ bool Ha_partition_share::init(uint num_parts) { DBUG_ENTER("Ha_partition_share::init"); partitions_share_refs= new Parts_share_refs; if (!partitions_share_refs) DBUG_RETURN(true); if (partitions_share_refs->init(num_parts)) { delete partitions_share_refs; DBUG_RETURN(true); } DBUG_RETURN(false); } /* Create new partition handler SYNOPSIS partition_create_handler() table Table object RETURN VALUE New partition object */ static handler *partition_create_handler(handlerton *hton, TABLE_SHARE *share, MEM_ROOT *mem_root) { ha_partition *file= new (mem_root) ha_partition(hton, share); if (file && file->initialize_partition(mem_root)) { delete file; file= 0; } return file; } /* HA_CAN_UPDATE_PARTITION_KEY: Set if the handler can update fields that are part of the partition function. HA_CAN_PARTITION_UNIQUE: Set if the handler can handle unique indexes where the fields of the unique key are not part of the fields of the partition function. Thus a unique key can be set on all fields. HA_USE_AUTO_PARTITION Set if the handler sets all tables to be partitioned by default. HA_CAN_EXCHANGE_PARTITION: Set if the handler can exchange a partition with a non-partitioned table of the same handlerton/engine. HA_CANNOT_PARTITION_FK: Set if the handler does not support foreign keys on partitioned tables. */ static uint partition_flags() { return HA_CAN_EXCHANGE_PARTITION | HA_CANNOT_PARTITION_FK; } const uint32 ha_partition::NO_CURRENT_PART_ID= NOT_A_PARTITION_ID; /* Constructor method SYNOPSIS ha_partition() table Table object RETURN VALUE NONE */ ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share) : handler(hton, share), Partition_helper(this) { DBUG_ENTER("ha_partition::ha_partition(table)"); init_handler_variables(); DBUG_VOID_RETURN; } /** ha_partition constructor method used by ha_partition::clone() @param hton Handlerton (partition_hton) @param share Table share object @param part_info_arg partition_info to use @param clone_arg ha_partition to clone @param clme_mem_root_arg MEM_ROOT to use @return New partition handler */ ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share, partition_info *part_info_arg, ha_partition *clone_arg, MEM_ROOT *clone_mem_root_arg) : handler(hton, share), Partition_helper(this) { DBUG_ENTER("ha_partition::ha_partition(clone)"); init_handler_variables(); m_part_info= part_info_arg; m_is_sub_partitioned= m_part_info->is_sub_partitioned(); m_is_clone_of= clone_arg; m_clone_mem_root= clone_mem_root_arg; part_share= clone_arg->part_share; m_tot_parts= clone_arg->m_tot_parts; m_pkey_is_clustered= clone_arg->primary_key_is_clustered(); DBUG_VOID_RETURN; } /* Initialize handler object SYNOPSIS init_handler_variables() RETURN VALUE NONE */ void ha_partition::init_handler_variables() { active_index= MAX_KEY; m_mode= 0; m_open_test_lock= 0; m_file_buffer= NULL; m_name_buffer_ptr= NULL; m_engine_array= NULL; m_file= NULL; m_file_tot_parts= 0; m_tot_parts= 0; m_pkey_is_clustered= 0; m_myisam= FALSE; m_innodb= FALSE; m_extra_cache= FALSE; m_extra_cache_size= 0; m_extra_prepare_for_update= FALSE; m_extra_cache_part_id= NO_CURRENT_PART_ID; m_handler_status= handler_not_initialized; m_low_byte_first= 1; m_part_func_monotonicity_info= NON_MONOTONIC; /* this allows blackhole to work properly */ m_num_locks= 0; m_is_clone_of= NULL; m_clone_mem_root= NULL; part_share= NULL; m_new_partitions_share_refs.empty(); m_part_ids_sorted_by_num_of_records= NULL; m_new_file= NULL; m_num_new_partitions= 0; m_indexes_are_disabled= false; } const char *ha_partition::table_type() const { // we can do this since we only support a single engine type return m_file[0]->table_type(); } /* Destructor method SYNOPSIS ~ha_partition() RETURN VALUE NONE */ ha_partition::~ha_partition() { DBUG_ENTER("ha_partition::~ha_partition()"); if (m_new_partitions_share_refs.elements) m_new_partitions_share_refs.delete_elements(); if (m_file != NULL) { uint i; for (i= 0; i < m_tot_parts; i++) delete m_file[i]; } my_free(m_part_ids_sorted_by_num_of_records); clear_handler_file(); DBUG_VOID_RETURN; } /* Initialize partition handler object SYNOPSIS initialize_partition() mem_root Allocate memory through this RETURN VALUE 1 Error 0 Success DESCRIPTION The partition handler is only a layer on top of other engines. Thus it can't really perform anything without the underlying handlers. Thus we add this method as part of the allocation of a handler object. 1) Allocation of underlying handlers If we have access to the partition info we will allocate one handler instance for each partition. 2) Allocation without partition info The cases where we don't have access to this information is when called in preparation for delete_table and rename_table and in that case we only need to set HA_FILE_BASED. In that case we will use the .par file that contains information about the partitions and their engines and the names of each partition. 3) Table flags initialisation We need also to set table flags for the partition handler. This is not static since it depends on what storage engines are used as underlying handlers. The table flags is set in this routine to simulate the behaviour of a normal storage engine The flag HA_FILE_BASED will be set independent of the underlying handlers 4) Index flags initialisation When knowledge exists on the indexes it is also possible to initialize the index flags. Again the index flags must be initialized by using the under- lying handlers since this is storage engine dependent. The flag HA_READ_ORDER will be reset for the time being to indicate no ordered output is available from partition handler indexes. Later a merge sort will be performed using the underlying handlers. 5) primary_key_is_clustered, has_transactions and low_byte_first is calculated here. */ bool ha_partition::initialize_partition(MEM_ROOT *mem_root) { handler **file_array, *file; ulonglong check_table_flags; DBUG_ENTER("ha_partition::initialize_partition"); if (Partition_helper::init_partitioning(mem_root)) { DBUG_RETURN(true); } if (m_part_info) { assert(m_tot_parts > 0); if (new_handlers_from_part_info(mem_root)) DBUG_RETURN(true); } else if (!table_share || !table_share->normalized_path.str) { /* Called with dummy table share (delete, rename and alter table). Don't need to set-up anything. */ DBUG_RETURN(false); } else if (get_from_handler_file(table_share->normalized_path.str, mem_root, false)) { my_error(ER_FAILED_READ_FROM_PAR_FILE, MYF(0)); DBUG_RETURN(true); } /* We create all underlying table handlers here. We do it in this special method to be able to report allocation errors. Set up low_byte_first, primary_key_is_clustered and has_transactions since they are called often in all kinds of places, other parameters are calculated on demand. Verify that all partitions have the same table_flags. */ check_table_flags= m_file[0]->ha_table_flags(); m_low_byte_first= m_file[0]->low_byte_first(); m_pkey_is_clustered= TRUE; file_array= m_file; do { file= *file_array; if (m_low_byte_first != file->low_byte_first()) { // Cannot have handlers with different endian my_error(ER_MIX_HANDLER_ERROR, MYF(0)); DBUG_RETURN(true); } if (!file->primary_key_is_clustered()) m_pkey_is_clustered= FALSE; if (check_table_flags != file->ha_table_flags()) { my_error(ER_MIX_HANDLER_ERROR, MYF(0)); DBUG_RETURN(true); } } while (*(++file_array)); m_handler_status= handler_initialized; DBUG_RETURN(false); } /**************************************************************************** MODULE meta data changes ****************************************************************************/ /* Delete a table SYNOPSIS delete_table() name Full path of table name RETURN VALUE >0 Error 0 Success DESCRIPTION Used to delete a table. By the time delete_table() has been called all opened references to this table will have been closed (and your globally shared references released. The variable name will just be the name of the table. You will need to remove any files you have created at this point. If you do not implement this, the default delete_table() is called from handler.cc and it will delete all files with the file extentions returned by bas_ext(). Called from handler.cc by delete_table and ha_create_table(). Only used during create if the table_flag HA_DROP_BEFORE_CREATE was specified for the storage engine. */ int ha_partition::delete_table(const char *name) { DBUG_ENTER("ha_partition::delete_table"); DBUG_RETURN(del_ren_table(name, NULL)); } /* Rename a table SYNOPSIS rename_table() from Full path of old table name to Full path of new table name RETURN VALUE >0 Error 0 Success DESCRIPTION Renames a table from one name to another from alter table call. If you do not implement this, the default rename_table() is called from handler.cc and it will rename all files with the file extentions returned by bas_ext(). Called from sql_table.cc by mysql_rename_table(). */ int ha_partition::rename_table(const char *from, const char *to) { DBUG_ENTER("ha_partition::rename_table"); DBUG_RETURN(del_ren_table(from, to)); } /* Create the handler file (.par-file) SYNOPSIS create_handler_files() name Full path of table name create_info Create info generated for CREATE TABLE RETURN VALUE >0 Error 0 Success DESCRIPTION create_handler_files is called to create any handler specific files before opening the file with openfrm to later call ::create on the file object. In the partition handler this is used to store the names of partitions and types of engines in the partitions. */ int ha_partition::create_handler_files(const char *path, const char *old_path, int action_flag, HA_CREATE_INFO *create_info) { DBUG_ENTER("ha_partition::create_handler_files()"); /* We need to update total number of parts since we might write the handler file as part of a partition management command */ if (action_flag == CHF_DELETE_FLAG || action_flag == CHF_RENAME_FLAG) { char name[FN_REFLEN]; char old_name[FN_REFLEN]; strxmov(name, path, ha_par_ext, NullS); strxmov(old_name, old_path, ha_par_ext, NullS); if ((action_flag == CHF_DELETE_FLAG && mysql_file_delete(key_file_ha_partition_par, name, MYF(MY_WME))) || (action_flag == CHF_RENAME_FLAG && mysql_file_rename(key_file_ha_partition_par, old_name, name, MYF(MY_WME)))) { DBUG_RETURN(TRUE); } } else if (action_flag == CHF_CREATE_FLAG) { if (create_handler_file(path)) { my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0)); DBUG_RETURN(1); } } DBUG_RETURN(0); } /* Create a partitioned table SYNOPSIS create() name Full path of table name table_arg Table object create_info Create info generated for CREATE TABLE RETURN VALUE >0 Error 0 Success DESCRIPTION create() is called to create a table. The variable name will have the name of the table. When create() is called you do not need to worry about opening the table. Also, the FRM file will have already been created so adjusting create_info will not do you any good. You can overwrite the frm file at this point if you wish to change the table definition, but there are no methods currently provided for doing that. Called from handler.cc by ha_create_table(). */ int ha_partition::create(const char *name, TABLE *table_arg, HA_CREATE_INFO *create_info) { int error; char name_buff[FN_REFLEN], name_lc_buff[FN_REFLEN]; char *name_buffer_ptr; const char *path; uint i; List_iterator_fast <partition_element> part_it(m_part_info->partitions); partition_element *part_elem; partition_element table_level_options; handler **file, **abort_file; THD *thd= ha_thd(); TABLE_SHARE *share= table_arg->s; DBUG_ENTER("ha_partition::create"); assert(*fn_rext((char*)name) == '\0'); /* Not allowed to create temporary partitioned tables */ if (create_info && create_info->options & HA_LEX_CREATE_TMP_TABLE) { my_error(ER_PARTITION_NO_TEMPORARY, MYF(0)); DBUG_RETURN(TRUE); } if (get_from_handler_file(name, ha_thd()->mem_root, false)) DBUG_RETURN(TRUE); assert(m_file_buffer); DBUG_PRINT("enter", ("name: (%s)", name)); name_buffer_ptr= m_name_buffer_ptr; file= m_file; /* Since ha_partition has HA_FILE_BASED, it must alter underlying table names if they do not have HA_FILE_BASED and lower_case_table_names == 2. See Bug#37402, for Mac OS X. The appended #P#<partname>[#SP#<subpartname>] will remain in current case. Using the first partitions handler, since mixing handlers is not allowed. */ path= get_canonical_filename(*file, name, name_lc_buff); table_level_options.set_from_info(create_info); for (i= 0; i < m_part_info->num_parts; i++) { part_elem= part_it++; if (m_is_sub_partitioned) { uint j; List_iterator_fast <partition_element> sub_it(part_elem->subpartitions); for (j= 0; j < m_part_info->num_subparts; j++) { part_elem= sub_it++; create_partition_name(name_buff, path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); if ((error= set_up_table_before_create(thd, share, name_buff, create_info, part_elem)) || ((error= (*file)->ha_create(name_buff, table_arg, create_info)))) goto create_error; table_level_options.put_to_info(create_info); name_buffer_ptr= strend(name_buffer_ptr) + 1; file++; } } else { create_partition_name(name_buff, path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); if ((error= set_up_table_before_create(thd, share, name_buff, create_info, part_elem)) || ((error= (*file)->ha_create(name_buff, table_arg, create_info)))) goto create_error; table_level_options.put_to_info(create_info); name_buffer_ptr= strend(name_buffer_ptr) + 1; file++; } } DBUG_RETURN(0); create_error: name_buffer_ptr= m_name_buffer_ptr; for (abort_file= file, file= m_file; file < abort_file; file++) { create_partition_name(name_buff, path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); (void) (*file)->ha_delete_table((const char*) name_buff); name_buffer_ptr= strend(name_buffer_ptr) + 1; } handler::delete_table(name); DBUG_RETURN(error); } /* Optimize table SYNOPSIS optimize() thd Thread object check_opt Check/analyze/repair/optimize options RETURN VALUES >0 Error 0 Success */ int ha_partition::optimize(THD *thd, HA_CHECK_OPT *check_opt) { DBUG_ENTER("ha_partition::optimize"); DBUG_RETURN(handle_opt_partitions(thd, check_opt, OPTIMIZE_PARTS)); } /* Analyze table SYNOPSIS analyze() thd Thread object check_opt Check/analyze/repair/optimize options RETURN VALUES >0 Error 0 Success */ int ha_partition::analyze(THD *thd, HA_CHECK_OPT *check_opt) { DBUG_ENTER("ha_partition::analyze"); DBUG_RETURN(handle_opt_partitions(thd, check_opt, ANALYZE_PARTS)); } /* Check table SYNOPSIS check() thd Thread object check_opt Check/analyze/repair/optimize options RETURN VALUES >0 Error 0 Success */ int ha_partition::check(THD *thd, HA_CHECK_OPT *check_opt) { DBUG_ENTER("ha_partition::check"); DBUG_RETURN(handle_opt_partitions(thd, check_opt, CHECK_PARTS)); } /* Repair table SYNOPSIS repair() thd Thread object check_opt Check/analyze/repair/optimize options RETURN VALUES >0 Error 0 Success */ int ha_partition::repair(THD *thd, HA_CHECK_OPT *check_opt) { DBUG_ENTER("ha_partition::repair"); DBUG_RETURN(handle_opt_partitions(thd, check_opt, REPAIR_PARTS)); } /** Assign to keycache @param thd Thread object @param check_opt Check/analyze/repair/optimize options @return @retval >0 Error @retval 0 Success */ int ha_partition::assign_to_keycache(THD *thd, HA_CHECK_OPT *check_opt) { DBUG_ENTER("ha_partition::assign_to_keycache"); DBUG_RETURN(handle_opt_partitions(thd, check_opt, ASSIGN_KEYCACHE_PARTS)); } /** Preload to keycache @param thd Thread object @param check_opt Check/analyze/repair/optimize options @return @retval >0 Error @retval 0 Success */ int ha_partition::preload_keys(THD *thd, HA_CHECK_OPT *check_opt) { DBUG_ENTER("ha_partition::preload_keys"); DBUG_RETURN(handle_opt_partitions(thd, check_opt, PRELOAD_KEYS_PARTS)); } /* Handle optimize/analyze/check/repair of one partition SYNOPSIS handle_opt_part() thd Thread object check_opt Options file Handler object of partition flag Optimize/Analyze/Check/Repair flag RETURN VALUE >0 Failure 0 Success */ int ha_partition::handle_opt_part(THD *thd, HA_CHECK_OPT *check_opt, uint part_id, enum_part_operation operation) { int error; handler *file= m_file[part_id]; DBUG_ENTER("handle_opt_part"); DBUG_PRINT("enter", ("operation = %u", operation)); if (operation == OPTIMIZE_PARTS) error= file->ha_optimize(thd, check_opt); else if (operation == ANALYZE_PARTS) error= file->ha_analyze(thd, check_opt); else if (operation == CHECK_PARTS) { error= file->ha_check(thd, check_opt); if (!error || error == HA_ADMIN_ALREADY_DONE || error == HA_ADMIN_NOT_IMPLEMENTED) { if (check_opt->flags & (T_MEDIUM | T_EXTEND)) error= Partition_helper::check_misplaced_rows(part_id, false); } } else if (operation == REPAIR_PARTS) { error= file->ha_repair(thd, check_opt); if (!error || error == HA_ADMIN_ALREADY_DONE || error == HA_ADMIN_NOT_IMPLEMENTED) { if (check_opt->flags & (T_MEDIUM | T_EXTEND)) error= Partition_helper::check_misplaced_rows(part_id, true); } } else if (operation == ASSIGN_KEYCACHE_PARTS) error= file->assign_to_keycache(thd, check_opt); else if (operation == PRELOAD_KEYS_PARTS) error= file->preload_keys(thd, check_opt); else { assert(FALSE); error= 1; } if (error == HA_ADMIN_ALREADY_DONE) error= 0; DBUG_RETURN(error); } /* Handle optimize/analyze/check/repair of partitions SYNOPSIS handle_opt_partitions() thd Thread object check_opt Options operation Optimize/Analyze/Check/Repair flag RETURN VALUE >0 Failure 0 Success */ int ha_partition::handle_opt_partitions(THD *thd, HA_CHECK_OPT *check_opt, enum_part_operation operation) { List_iterator<partition_element> part_it(m_part_info->partitions); uint num_parts= m_part_info->num_parts; uint num_subparts= m_part_info->num_subparts; uint i= 0; bool use_all_parts= !(thd->lex->alter_info.flags & Alter_info::ALTER_ADMIN_PARTITION); int error; DBUG_ENTER("ha_partition::handle_opt_partitions"); DBUG_PRINT("enter", ("operation= %u", operation)); do { partition_element *part_elem= part_it++; /* when ALTER TABLE <CMD> PARTITION ... it should only do named [sub]partitions, otherwise all partitions */ if (m_is_sub_partitioned) { List_iterator<partition_element> subpart_it(part_elem->subpartitions); partition_element *sub_elem; uint j= 0, part; do { sub_elem= subpart_it++; if (use_all_parts || part_elem->part_state == PART_ADMIN || sub_elem->part_state == PART_ADMIN) { part= i * num_subparts + j; DBUG_PRINT("info", ("Optimize subpartition %u (%s)", part, sub_elem->partition_name)); if ((error= handle_opt_part(thd, check_opt, part, operation))) { /* print a line which partition the error belongs to */ if (error != HA_ADMIN_NOT_IMPLEMENTED && error != HA_ADMIN_ALREADY_DONE && error != HA_ADMIN_TRY_ALTER) { print_admin_msg(thd, MI_MAX_MSG_BUF, "error", table_share->db.str, table->alias, opt_op_name[operation], "Subpartition %s returned error", sub_elem->partition_name); } /* reset part_state for the remaining partitions */ do { if (sub_elem->part_state == PART_ADMIN) sub_elem->part_state= PART_NORMAL; } while ((sub_elem= subpart_it++)); if (part_elem->part_state == PART_ADMIN) part_elem->part_state= PART_NORMAL; while ((part_elem= part_it++)) { List_iterator<partition_element> s_it(part_elem->subpartitions); while ((sub_elem= s_it++)) { if (sub_elem->part_state == PART_ADMIN) sub_elem->part_state= PART_NORMAL; } if (part_elem->part_state == PART_ADMIN) part_elem->part_state= PART_NORMAL; } DBUG_RETURN(error); } sub_elem->part_state= PART_NORMAL; } } while (++j < num_subparts); part_elem->part_state= PART_NORMAL; } else { if (use_all_parts || part_elem->part_state == PART_ADMIN) { DBUG_PRINT("info", ("Optimize partition %u (%s)", i, part_elem->partition_name)); if ((error= handle_opt_part(thd, check_opt, i, operation))) { /* print a line which partition the error belongs to */ if (error != HA_ADMIN_NOT_IMPLEMENTED && error != HA_ADMIN_ALREADY_DONE && error != HA_ADMIN_TRY_ALTER) { print_admin_msg(thd, MI_MAX_MSG_BUF, "error", table_share->db.str, table->alias, opt_op_name[operation], "Partition %s returned error", part_elem->partition_name); } /* reset part_state for the remaining partitions */ do { if (part_elem->part_state == PART_ADMIN) part_elem->part_state= PART_NORMAL; } while ((part_elem= part_it++)); DBUG_RETURN(error); } } part_elem->part_state= PART_NORMAL; } } while (++i < num_parts); DBUG_RETURN(FALSE); } /** @brief Check and repair the table if neccesary @param thd Thread object @retval TRUE Error/Not supported @retval FALSE Success @note Called if open_table_from_share fails and ::is_crashed(). */ bool ha_partition::check_and_repair(THD *thd) { handler **file= m_file; DBUG_ENTER("ha_partition::check_and_repair"); do { if ((*file)->ha_check_and_repair(thd)) DBUG_RETURN(TRUE); } while (*(++file)); DBUG_RETURN(FALSE); } /** @breif Check if the table can be automatically repaired @retval TRUE Can be auto repaired @retval FALSE Cannot be auto repaired */ bool ha_partition::auto_repair() const { DBUG_ENTER("ha_partition::auto_repair"); /* As long as we only support one storage engine per table, we can use the first partition for this function. */ DBUG_RETURN(m_file[0]->auto_repair()); } /** @breif Check if the table is crashed @retval TRUE Crashed @retval FALSE Not crashed */ bool ha_partition::is_crashed() const { handler **file= m_file; DBUG_ENTER("ha_partition::is_crashed"); do { if ((*file)->is_crashed()) DBUG_RETURN(TRUE); } while (*(++file)); DBUG_RETURN(FALSE); } /** Prepare for creating new partitions during ALTER TABLE ... PARTITION. @param num_partitions Number of new partitions to be created. @param only_create True if only creating the partition (no open/lock is needed). @param disable_non_uniq_indexes True if non unique indexes are disabled. @return Operation status. @retval 0 Success. @retval != 0 Error code. */ int ha_partition::prepare_for_new_partitions(uint num_partitions, bool only_create) { size_t alloc_size = num_partitions * sizeof(handler*); DBUG_ENTER("ha_partition::prepare_for_new_partition"); m_new_file= static_cast<handler**>( my_malloc(key_memory_ha_partition_engine_array, alloc_size, MYF(MY_WME))); if (!m_new_file) { DBUG_RETURN(HA_ERR_OUT_OF_MEM); } memset(m_new_file, 0, alloc_size); m_num_new_partitions= num_partitions; m_indexes_are_disabled= indexes_are_disabled(); DBUG_RETURN(0); } /** Creating a new partition Used during fast_alter_part_table (ALTER TABLE ... ADD/DROP... PARTITION). @param table Table object. @param create_info Create info from CREATE TABLE. @param part_name Partition name. @param new_part_id Partition id in m_new_file array. @param p_elem Partition element. @return Operation status @retval 0 Success @retval >0 Error */ int ha_partition::create_new_partition(TABLE *tbl, HA_CREATE_INFO *create_info, const char *part_name, uint new_part_id, partition_element *p_elem) { int error; THD *thd= ha_thd(); TABLE_SHARE *share= tbl->s; handler *file; Parts_share_refs *p_share_refs; DBUG_ENTER("ha_partition::create_new_partition"); file= get_new_handler(share, thd->mem_root, p_elem->engine_type); if (!file) { mem_alloc_error(sizeof(ha_partition)); DBUG_RETURN(HA_ERR_OUT_OF_MEM); } /* The Handler_shares for each partition's handler can be allocated within this handler, since there will not be any more instances of the new partitions, until the table is reopened after the ALTER succeeded. */ p_share_refs= new Parts_share_refs; if (!p_share_refs) { mem_alloc_error(sizeof(Parts_share_refs)); DBUG_RETURN(HA_ERR_OUT_OF_MEM); } if (p_share_refs->init(1)) { mem_alloc_error(sizeof(Parts_share_refs)); DBUG_RETURN(HA_ERR_OUT_OF_MEM); } if (m_new_partitions_share_refs.push_back(p_share_refs)) { mem_alloc_error(sizeof(Parts_share_refs)); DBUG_RETURN(HA_ERR_OUT_OF_MEM); } if (file->set_ha_share_ref(&p_share_refs->ha_shares[0])) { DBUG_RETURN(HA_ERR_INITIALIZATION); } if ((error= file->ha_create(part_name, tbl, create_info))) { /* Added for safety, InnoDB reports HA_ERR_FOUND_DUPP_KEY if the table/partition already exists. If we return that error code, then print_error would try to get_dup_key on a non-existing partition. So return a more reasonable error code. */ if (error == HA_ERR_FOUND_DUPP_KEY) error= HA_ERR_TABLE_EXIST; goto error_create; } DBUG_PRINT("info", ("partition %s created", part_name)); if ((error= file->ha_open(tbl, part_name, m_mode, m_open_test_lock | HA_OPEN_NO_PSI_CALL))) { goto error_open; } DBUG_PRINT("info", ("partition %s opened", part_name)); /* Note: if you plan to add another call that may return failure, better to do it before external_lock() as close_new_partitions() assumes that external_lock() is last call that may fail here. Otherwise see description for close_new_partitions(). */ if ((error= file->ha_external_lock(ha_thd(), F_WRLCK))) { goto error_external_lock; } DBUG_PRINT("info", ("partition %s external locked", part_name)); if (m_indexes_are_disabled) { file->ha_disable_indexes(m_indexes_are_disabled); } m_new_file[new_part_id]= file; DBUG_RETURN(0); error_external_lock: (void) file->ha_close(); error_open: (void) file->ha_delete_table(part_name); error_create: DBUG_RETURN(error); } /** Insert a row to the new partition. @param part_id Partition to insert into. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::write_row_in_new_part(uint part_id) { int error; THD *thd= ha_thd(); DBUG_ENTER("ha_partition::write_row_in_new_part"); m_last_part= part_id; if (!m_new_file[part_id]) { /* Altered partition contains misplaced row. */ m_err_rec= table->record[0]; DBUG_RETURN(HA_ERR_ROW_IN_WRONG_PARTITION); } tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ error= m_new_file[part_id]->ha_write_row(table->record[0]); reenable_binlog(thd); DBUG_RETURN(error); } /* Close and unlock all created partitions. So they can be renamed and included in the altered table or deleted by the ddl-log in case of failure. */ void ha_partition::close_new_partitions() { DBUG_ENTER("ha_partition::close_new_partitions"); THD *thd; if (m_new_file) { thd= ha_thd(); handler **file= &m_new_file[m_num_new_partitions - 1]; for (; m_new_file <= file; file--) { if (*file == NULL) { /* Not a new partition, skip it. */ continue; } (*file)->ha_external_lock(thd, F_UNLCK); (*file)->ha_close(); delete *file; } my_free(m_new_file); m_new_file= NULL; } DBUG_VOID_RETURN; } /* Update create info as part of ALTER TABLE SYNOPSIS update_create_info() create_info Create info from ALTER TABLE RETURN VALUE NONE DESCRIPTION Forward this handler call to the storage engine foreach partition handler. The data_file_name for each partition may need to be reset if the tablespace was moved. Use a dummy HA_CREATE_INFO structure and transfer necessary data. */ void ha_partition::update_create_info(HA_CREATE_INFO *create_info) { DBUG_ENTER("ha_partition::update_create_info"); /* Fix for bug#38751, some engines needs info-calls in ALTER. Archive need this since it flushes in ::info. HA_STATUS_AUTO is optimized so it will not always be forwarded to all partitions, but HA_STATUS_VARIABLE will. */ info(HA_STATUS_VARIABLE); info(HA_STATUS_AUTO); if (!(create_info->used_fields & HA_CREATE_USED_AUTO)) create_info->auto_increment_value= stats.auto_increment_value; /* DATA DIRECTORY and INDEX DIRECTORY are never applied to the whole partitioned table, only its parts. */ my_bool from_alter = (create_info->data_file_name == (const char*) -1); create_info->data_file_name= create_info->index_file_name = NULL; /* We do not need to update the individual partition DATA DIRECTORY settings since they can be changed by ALTER TABLE ... REORGANIZE PARTITIONS. */ if (from_alter) DBUG_VOID_RETURN; /* send Handler::update_create_info() to the storage engine for each partition that currently has a handler object. Using a dummy HA_CREATE_INFO structure to collect DATA and INDEX DIRECTORYs. */ List_iterator<partition_element> part_it(m_part_info->partitions); partition_element *part_elem, *sub_elem; uint num_subparts= m_part_info->num_subparts; uint num_parts = num_subparts ? m_file_tot_parts / num_subparts : m_file_tot_parts; HA_CREATE_INFO dummy_info; /* Since update_create_info() can be called from mysql_prepare_alter_table() when not all handlers are set up, we look for that condition first. If all handlers are not available, do not call update_create_info for any. */ uint i, j, part; for (i= 0; i < num_parts; i++) { part_elem= part_it++; if (!part_elem) DBUG_VOID_RETURN; if (m_is_sub_partitioned) { List_iterator<partition_element> subpart_it(part_elem->subpartitions); for (j= 0; j < num_subparts; j++) { sub_elem= subpart_it++; if (!sub_elem) DBUG_VOID_RETURN; part= i * num_subparts + j; if (part >= m_file_tot_parts || !m_file[part]) DBUG_VOID_RETURN; } } else { if (!m_file[i]) DBUG_VOID_RETURN; } } part_it.rewind(); for (i= 0; i < num_parts; i++) { part_elem= part_it++; assert(part_elem); if (m_is_sub_partitioned) { List_iterator<partition_element> subpart_it(part_elem->subpartitions); for (j= 0; j < num_subparts; j++) { sub_elem= subpart_it++; assert(sub_elem); part= i * num_subparts + j; assert(part < m_file_tot_parts && m_file[part]); if (ha_legacy_type(m_file[part]->ht) == DB_TYPE_INNODB) { dummy_info.data_file_name= dummy_info.index_file_name = NULL; m_file[part]->update_create_info(&dummy_info); if (dummy_info.data_file_name || sub_elem->data_file_name) { sub_elem->data_file_name = (char*) dummy_info.data_file_name; } if (dummy_info.index_file_name || sub_elem->index_file_name) { sub_elem->index_file_name = (char*) dummy_info.index_file_name; } } } } else { assert(m_file[i]); if (ha_legacy_type(m_file[i]->ht) == DB_TYPE_INNODB) { dummy_info.data_file_name= dummy_info.index_file_name= NULL; m_file[i]->update_create_info(&dummy_info); if (dummy_info.data_file_name || part_elem->data_file_name) { part_elem->data_file_name = (char*) dummy_info.data_file_name; } if (dummy_info.index_file_name || part_elem->index_file_name) { part_elem->index_file_name = (char*) dummy_info.index_file_name; } } } } DBUG_VOID_RETURN; } /** Change the internal TABLE_SHARE pointer @param table_arg TABLE object @param share New share to use @note Is used in error handling in ha_delete_table. All handlers should exist (lock_partitions should not be used) */ void ha_partition::change_table_ptr(TABLE *table_arg, TABLE_SHARE *share) { handler **file_array; table= table_arg; table_share= share; /* m_file can be NULL when using an old cached table in DROP TABLE, when the table just has REMOVED PARTITIONING, see Bug#42438 */ if (m_file) { file_array= m_file; assert(*file_array); do { (*file_array)->change_table_ptr(table_arg, share); } while (*(++file_array)); } } /** Handle delete and rename table @param from Full path of old table @param to Full path of new table @return Operation status @retval >0 Error @retval 0 Success @note Common routine to handle delete_table and rename_table. The routine uses the partition handler file to get the names of the partition instances. Both these routines are called after creating the handler without table object and thus the file is needed to discover the names of the partitions and the underlying storage engines. */ int ha_partition::del_ren_table(const char *from, const char *to) { int save_error= 0; int error= HA_ERR_INTERNAL_ERROR; char from_buff[FN_REFLEN], to_buff[FN_REFLEN], from_lc_buff[FN_REFLEN], to_lc_buff[FN_REFLEN], buff[FN_REFLEN]; char *name_buffer_ptr; const char *from_path; const char *to_path= NULL; uint i; handler **file, **abort_file; DBUG_ENTER("ha_partition::del_ren_table"); fn_format(buff,from, "", ha_par_ext, MY_APPEND_EXT); /* Check if the par file exists */ if (my_access(buff,F_OK)) { /* If the .par file does not exist, return HA_ERR_NO_SUCH_TABLE, This will signal to the caller that it can remove the .frm file. */ error= HA_ERR_NO_SUCH_TABLE; DBUG_RETURN(error); } if (get_from_handler_file(from, ha_thd()->mem_root, false)) DBUG_RETURN(error); assert(m_file_buffer); DBUG_PRINT("enter", ("from: (%s) to: (%s)", from, to ? to : "(nil)")); name_buffer_ptr= m_name_buffer_ptr; file= m_file; /* Since ha_partition has HA_FILE_BASED, it must alter underlying table names if they do not have HA_FILE_BASED and lower_case_table_names == 2. See Bug#37402, for Mac OS X. The appended #P#<partname>[#SP#<subpartname>] will remain in current case. Using the first partitions handler, since mixing handlers is not allowed. */ from_path= get_canonical_filename(*file, from, from_lc_buff); if (to != NULL) to_path= get_canonical_filename(*file, to, to_lc_buff); i= 0; do { create_partition_name(from_buff, from_path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); if (to != NULL) { // Rename branch create_partition_name(to_buff, to_path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); error= (*file)->ha_rename_table(from_buff, to_buff); if (error) goto rename_error; } else // delete branch { error= (*file)->ha_delete_table(from_buff); } name_buffer_ptr= strend(name_buffer_ptr) + 1; if (error) save_error= error; i++; } while (*(++file)); if (to == NULL) { DBUG_EXECUTE_IF("crash_before_deleting_par_file", DBUG_SUICIDE();); /* Delete the .par file. If error, break.*/ if ((error= handler::delete_table(from))) DBUG_RETURN(error); DBUG_EXECUTE_IF("crash_after_deleting_par_file", DBUG_SUICIDE();); } if (to != NULL) { if ((error= handler::rename_table(from, to))) { /* Try to revert everything, ignore errors */ (void) handler::rename_table(to, from); goto rename_error; } } DBUG_RETURN(save_error); rename_error: name_buffer_ptr= m_name_buffer_ptr; for (abort_file= file, file= m_file; file < abort_file; file++) { /* Revert the rename, back from 'to' to the original 'from' */ create_partition_name(from_buff, from_path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); create_partition_name(to_buff, to_path, name_buffer_ptr, NORMAL_PART_NAME, FALSE); /* Ignore error here */ (void) (*file)->ha_rename_table(to_buff, from_buff); name_buffer_ptr= strend(name_buffer_ptr) + 1; } DBUG_RETURN(error); } /* Add two names together SYNOPSIS name_add() out:dest Destination string first_name First name sec_name Second name RETURN VALUE >0 Error 0 Success DESCRIPTION Routine used to add two names with '_' in between then. Service routine to create_handler_file Include the NULL in the count of characters since it is needed as separator between the partition names. */ static uint name_add(char *dest, const char *first_name, const char *sec_name) { return (uint) (strxmov(dest, first_name, "#SP#", sec_name, NullS) -dest) + 1; } /** Create the special .par file @param name Full path of table name @return Operation status @retval FALSE Error code @retval TRUE Success @note Method used to create handler file with names of partitions, their engine types and the number of partitions. */ bool ha_partition::create_handler_file(const char *name) { partition_element *part_elem, *subpart_elem; uint i, j; size_t part_name_len, subpart_name_len, tot_name_len; uint tot_partition_words, num_parts; uint tot_parts= 0; uint tot_len_words, tot_len_byte, chksum, tot_name_words; char *name_buffer_ptr; uchar *file_buffer, *engine_array; bool result= TRUE; char file_name[FN_REFLEN]; char part_name[FN_REFLEN]; char subpart_name[FN_REFLEN]; File file; List_iterator_fast <partition_element> part_it(m_part_info->partitions); DBUG_ENTER("create_handler_file"); num_parts= m_part_info->partitions.elements; DBUG_PRINT("info", ("table name = %s, num_parts = %u", name, num_parts)); tot_name_len= 0; for (i= 0; i < num_parts; i++) { part_elem= part_it++; if (part_elem->part_state != PART_NORMAL && part_elem->part_state != PART_TO_BE_ADDED && part_elem->part_state != PART_CHANGED) continue; tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN); part_name_len= strlen(part_name); if (!m_is_sub_partitioned) { tot_name_len+= part_name_len + 1; tot_parts++; } else { List_iterator_fast <partition_element> sub_it(part_elem->subpartitions); for (j= 0; j < m_part_info->num_subparts; j++) { subpart_elem= sub_it++; tablename_to_filename(subpart_elem->partition_name, subpart_name, FN_REFLEN); subpart_name_len= strlen(subpart_name); tot_name_len+= part_name_len + subpart_name_len + 5; tot_parts++; } } } /* File format: Length in words 4 byte Checksum 4 byte Total number of partitions 4 byte Array of engine types n * 4 bytes where n = (m_tot_parts + 3)/4 Length of name part in bytes 4 bytes (Names in filename format) Name part m * 4 bytes where m = ((length_name_part + 3)/4)*4 All padding bytes are zeroed */ tot_partition_words= (tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; tot_name_words= (tot_name_len + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; /* 4 static words (tot words, checksum, tot partitions, name length) */ tot_len_words= 4 + tot_partition_words + tot_name_words; tot_len_byte= PAR_WORD_SIZE * tot_len_words; if (!(file_buffer= (uchar *) my_malloc(key_memory_ha_partition_file, tot_len_byte, MYF(MY_ZEROFILL)))) DBUG_RETURN(TRUE); engine_array= (file_buffer + PAR_ENGINES_OFFSET); name_buffer_ptr= (char*) (engine_array + tot_partition_words * PAR_WORD_SIZE + PAR_WORD_SIZE); part_it.rewind(); for (i= 0; i < num_parts; i++) { part_elem= part_it++; if (part_elem->part_state != PART_NORMAL && part_elem->part_state != PART_TO_BE_ADDED && part_elem->part_state != PART_CHANGED) continue; if (!m_is_sub_partitioned) { tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN); name_buffer_ptr= my_stpcpy(name_buffer_ptr, part_name)+1; *engine_array= (uchar) ha_legacy_type(part_elem->engine_type); DBUG_PRINT("info", ("engine: %u", *engine_array)); engine_array++; } else { List_iterator_fast <partition_element> sub_it(part_elem->subpartitions); for (j= 0; j < m_part_info->num_subparts; j++) { subpart_elem= sub_it++; tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN); tablename_to_filename(subpart_elem->partition_name, subpart_name, FN_REFLEN); name_buffer_ptr+= name_add(name_buffer_ptr, part_name, subpart_name); *engine_array= (uchar) ha_legacy_type(subpart_elem->engine_type); DBUG_PRINT("info", ("engine: %u", *engine_array)); engine_array++; } } } chksum= 0; int4store(file_buffer, tot_len_words); int4store(file_buffer + PAR_NUM_PARTS_OFFSET, tot_parts); int4store(file_buffer + PAR_ENGINES_OFFSET + (tot_partition_words * PAR_WORD_SIZE), static_cast<uint32>(tot_name_len)); for (i= 0; i < tot_len_words; i++) chksum^= uint4korr(file_buffer + PAR_WORD_SIZE * i); int4store(file_buffer + PAR_CHECKSUM_OFFSET, chksum); /* Add .par extension to the file name. Create and write and close file to be used at open, delete_table and rename_table */ fn_format(file_name, name, "", ha_par_ext, MY_APPEND_EXT); if ((file= mysql_file_create(key_file_ha_partition_par, file_name, CREATE_MODE, O_RDWR | O_TRUNC, MYF(MY_WME))) >= 0) { result= mysql_file_write(file, (uchar *) file_buffer, tot_len_byte, MYF(MY_WME | MY_NABP)) != 0; (void) mysql_file_close(file, MYF(0)); } else result= TRUE; my_free(file_buffer); DBUG_RETURN(result); } /** Clear handler variables and free some memory */ void ha_partition::clear_handler_file() { if (m_engine_array) { plugin_unlock_list(NULL, m_engine_array, m_tot_parts); my_free(m_engine_array); m_engine_array= NULL; } if (m_file_buffer) { my_free(m_file_buffer); m_file_buffer= NULL; } } /** Create underlying handler objects @param mem_root Allocate memory through this @return Operation status @retval TRUE Error @retval FALSE Success */ bool ha_partition::create_handlers(MEM_ROOT *mem_root) { uint i; uint alloc_len= (m_tot_parts + 1) * sizeof(handler*); handlerton *hton0; DBUG_ENTER("create_handlers"); if (!(m_file= (handler **) alloc_root(mem_root, alloc_len))) DBUG_RETURN(TRUE); m_file_tot_parts= m_tot_parts; memset(m_file, 0, alloc_len); for (i= 0; i < m_tot_parts; i++) { handlerton *hton= plugin_data<handlerton*>(m_engine_array[i]); if (!(m_file[i]= get_new_handler(table_share, mem_root, hton))) DBUG_RETURN(TRUE); DBUG_PRINT("info", ("engine_type: %u", hton->db_type)); } /* For the moment we only support partition over the same table engine */ hton0= plugin_data<handlerton*>(m_engine_array[0]); if (ha_legacy_type(hton0) == DB_TYPE_MYISAM) { DBUG_PRINT("info", ("MyISAM")); m_myisam= TRUE; } /* INNODB may not be compiled in... */ else if (ha_legacy_type(hton0) == DB_TYPE_INNODB) { DBUG_PRINT("info", ("InnoDB")); m_innodb= TRUE; } DBUG_RETURN(FALSE); } /* Create underlying handler objects from partition info SYNOPSIS new_handlers_from_part_info() mem_root Allocate memory through this RETURN VALUE TRUE Error FALSE Success */ bool ha_partition::new_handlers_from_part_info(MEM_ROOT *mem_root) { uint i, j, part_count; partition_element *part_elem; uint alloc_len= (m_tot_parts + 1) * sizeof(handler*); List_iterator_fast <partition_element> part_it(m_part_info->partitions); DBUG_ENTER("ha_partition::new_handlers_from_part_info"); if (!(m_file= (handler **) alloc_root(mem_root, alloc_len))) { mem_alloc_error(alloc_len); goto error_end; } m_file_tot_parts= m_tot_parts; memset(m_file, 0, alloc_len); assert(m_part_info->num_parts > 0); assert(m_part_info->num_parts == m_part_info->partitions.elements); i= 0; part_count= 0; /* Don't know the size of the underlying storage engine, invent a number of bytes allocated for error message if allocation fails */ do { part_elem= part_it++; if (m_is_sub_partitioned) { for (j= 0; j < m_part_info->num_subparts; j++) { if (!(m_file[part_count++]= get_new_handler(table_share, mem_root, part_elem->engine_type))) goto error; DBUG_PRINT("info", ("engine_type: %u", (uint) ha_legacy_type(part_elem->engine_type))); } } else { if (!(m_file[part_count++]= get_new_handler(table_share, mem_root, part_elem->engine_type))) goto error; DBUG_PRINT("info", ("engine_type: %u", (uint) ha_legacy_type(part_elem->engine_type))); } } while (++i < m_part_info->num_parts); if (ha_legacy_type(part_elem->engine_type) == DB_TYPE_MYISAM) { DBUG_PRINT("info", ("MyISAM")); m_myisam= TRUE; } DBUG_RETURN(FALSE); error: mem_alloc_error(sizeof(handler)); error_end: DBUG_RETURN(TRUE); } /** Read the .par file to get the partitions engines and names @param name Name of table file (without extention) @return Operation status @retval true Failure @retval false Success @note On success, m_file_buffer is allocated and must be freed by the caller. m_name_buffer_ptr and m_tot_parts is also set. */ bool ha_partition::read_par_file(const char *name) { char buff[FN_REFLEN], *tot_name_len_offset, *buff_p= buff; File file; char *file_buffer; uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum; DBUG_ENTER("ha_partition::read_par_file"); DBUG_PRINT("enter", ("table name: '%s'", name)); if (m_file_buffer) DBUG_RETURN(false); fn_format(buff, name, "", ha_par_ext, MY_APPEND_EXT); /* Following could be done with mysql_file_stat to read in whole file */ if ((file= mysql_file_open(key_file_ha_partition_par, buff, O_RDONLY | O_SHARE, MYF(0))) < 0) DBUG_RETURN(TRUE); if (mysql_file_read(file, (uchar *) &buff[0], PAR_WORD_SIZE, MYF(MY_NABP))) goto err1; len_words= uint4korr(buff_p); len_bytes= PAR_WORD_SIZE * len_words; if (mysql_file_seek(file, 0, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR) goto err1; if (!(file_buffer= (char*) my_malloc(key_memory_ha_partition_file, len_bytes, MYF(0)))) goto err1; if (mysql_file_read(file, (uchar *) file_buffer, len_bytes, MYF(MY_NABP))) goto err2; chksum= 0; for (i= 0; i < len_words; i++) chksum ^= uint4korr((file_buffer) + PAR_WORD_SIZE * i); if (chksum) goto err2; m_tot_parts= uint4korr((file_buffer) + PAR_NUM_PARTS_OFFSET); DBUG_PRINT("info", ("No of parts = %u", m_tot_parts)); assert(!m_file_tot_parts || m_file_tot_parts == m_tot_parts); tot_partition_words= (m_tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; tot_name_len_offset= file_buffer + PAR_ENGINES_OFFSET + PAR_WORD_SIZE * tot_partition_words; tot_name_words= (uint4korr(tot_name_len_offset) + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; /* Verify the total length = tot size word, checksum word, num parts word + engines array + name length word + name array. */ if (len_words != (tot_partition_words + tot_name_words + 4)) goto err2; (void) mysql_file_close(file, MYF(0)); m_file_buffer= file_buffer; // Will be freed in clear_handler_file() m_name_buffer_ptr= tot_name_len_offset + PAR_WORD_SIZE; DBUG_RETURN(false); err2: my_free(file_buffer); err1: (void) mysql_file_close(file, MYF(0)); DBUG_RETURN(true); } /** Setup m_engine_array @param mem_root MEM_ROOT to use for allocating new handlers @return Operation status @retval false Success @retval true Failure */ bool ha_partition::setup_engine_array(MEM_ROOT *mem_root) { uint i; uchar *buff; handlerton *first_engine; enum legacy_db_type db_type, first_db_type; assert(!m_file); assert(!m_engine_array); DBUG_ENTER("ha_partition::setup_engine_array"); buff= (uchar *) (m_file_buffer + PAR_ENGINES_OFFSET); first_db_type= (enum legacy_db_type) buff[0]; first_engine= ha_resolve_by_legacy_type(ha_thd(), first_db_type); if (!first_engine) goto err; if (!(m_engine_array= (plugin_ref*) my_malloc(key_memory_ha_partition_engine_array, m_tot_parts * sizeof(plugin_ref), MYF(MY_WME)))) goto err; for (i= 0; i < m_tot_parts; i++) { db_type= (enum legacy_db_type) buff[i]; if (db_type != first_db_type) { DBUG_PRINT("error", ("partition %u engine %d is not same as " "first partition %d", i, db_type, (int) first_db_type)); assert(0); clear_handler_file(); goto err; } m_engine_array[i]= ha_lock_engine(NULL, first_engine); if (!m_engine_array[i]) { clear_handler_file(); goto err; } } if (create_handlers(mem_root)) { clear_handler_file(); DBUG_RETURN(true); } DBUG_RETURN(false); err: DBUG_RETURN(true); } /** Get info about partition engines and their names from the .par file @param name Full path of table name @param mem_root Allocate memory through this @param is_clone If it is a clone, don't create new handlers @return Operation status @retval true Error @retval false Success @note Open handler file to get partition names, engine types and number of partitions. */ bool ha_partition::get_from_handler_file(const char *name, MEM_ROOT *mem_root, bool is_clone) { DBUG_ENTER("ha_partition::get_from_handler_file"); DBUG_PRINT("enter", ("table name: '%s'", name)); if (m_file_buffer) DBUG_RETURN(false); if (read_par_file(name)) DBUG_RETURN(true); if (!is_clone && setup_engine_array(mem_root)) DBUG_RETURN(true); DBUG_RETURN(false); } /**************************************************************************** MODULE open/close object ****************************************************************************/ /** Set Handler_share pointer and allocate Handler_share pointers for each partition and set those. @param ha_share_arg Where to store/retrieve the Partitioning_share pointer to be shared by all instances of the same table. @return Operation status @retval true Failure @retval false Sucess */ bool ha_partition::set_ha_share_ref(Handler_share **ha_share_arg) { Handler_share **ha_shares; uint i; DBUG_ENTER("ha_partition::set_ha_share_ref"); assert(!part_share); assert(table_share); assert(!m_is_clone_of); assert(m_tot_parts); if (handler::set_ha_share_ref(ha_share_arg)) DBUG_RETURN(true); if (!(part_share= get_share())) DBUG_RETURN(true); assert(part_share->partitions_share_refs); assert(part_share->partitions_share_refs->num_parts >= m_tot_parts); ha_shares= part_share->partitions_share_refs->ha_shares; for (i= 0; i < m_tot_parts; i++) { if (m_file[i]->set_ha_share_ref(&ha_shares[i])) DBUG_RETURN(true); } DBUG_RETURN(false); } /** Get the PARTITION_SHARE for the table. @return Operation status @retval true Error @retval false Success @note Gets or initializes the Ha_partition_share object used by partitioning. The Ha_partition_share is used for handling the auto_increment etc. */ Ha_partition_share *ha_partition::get_share() { Ha_partition_share *tmp_share; DBUG_ENTER("ha_partition::get_share"); assert(table_share); lock_shared_ha_data(); if (!(tmp_share= static_cast<Ha_partition_share*>(get_ha_share_ptr()))) { tmp_share= new Ha_partition_share; if (!tmp_share) goto err; if (tmp_share->init(m_tot_parts)) { delete tmp_share; tmp_share= NULL; goto err; } if (table && table->found_next_number_field && tmp_share->init_auto_inc_mutex(table_share)) { delete tmp_share; tmp_share= NULL; goto err; } set_ha_share_ptr(static_cast<Handler_share*>(tmp_share)); } err: unlock_shared_ha_data(); DBUG_RETURN(tmp_share); } /** Helper function for freeing all internal bitmaps. */ void ha_partition::free_partition_bitmaps() { /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */ bitmap_free(&m_bulk_insert_started); bitmap_free(&m_locked_partitions); bitmap_free(&m_partitions_to_reset); } /** Helper function for initializing all internal bitmaps. */ bool ha_partition::init_partition_bitmaps() { DBUG_ENTER("ha_partition::init_partition_bitmaps"); /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */ if (bitmap_init(&m_bulk_insert_started, NULL, m_tot_parts + 1, FALSE)) DBUG_RETURN(true); bitmap_clear_all(&m_bulk_insert_started); /* Initialize the bitmap we use to keep track of locked partitions */ if (bitmap_init(&m_locked_partitions, NULL, m_tot_parts, FALSE)) { bitmap_free(&m_bulk_insert_started); DBUG_RETURN(true); } bitmap_clear_all(&m_locked_partitions); /* Initialize the bitmap we use to keep track of partitions which may have something to reset in ha_reset(). */ if (bitmap_init(&m_partitions_to_reset, NULL, m_tot_parts, FALSE)) { bitmap_free(&m_bulk_insert_started); bitmap_free(&m_locked_partitions); DBUG_RETURN(true); } bitmap_clear_all(&m_partitions_to_reset); /* Initialize the bitmap for read/lock_partitions */ if (!m_is_clone_of) { assert(!m_clone_mem_root); if (m_part_info->set_partition_bitmaps(NULL)) { free_partition_bitmaps(); DBUG_RETURN(true); } } DBUG_RETURN(false); } /* Open handler object SYNOPSIS open() name Full path of table name mode Open mode flags test_if_locked ? RETURN VALUE >0 Error 0 Success DESCRIPTION Used for opening tables. The name will be the name of the file. A table is opened when it needs to be opened. For instance when a request comes in for a select on the table (tables are not open and closed for each request, they are cached). Called from handler.cc by handler::ha_open(). The server opens all tables by calling ha_open() which then calls the handler specific open(). */ int ha_partition::open(const char *name, int mode, uint test_if_locked) { char *name_buffer_ptr; int error= HA_ERR_INITIALIZATION; handler **file; char name_buff[FN_REFLEN]; ulonglong check_table_flags; DBUG_ENTER("ha_partition::open"); assert(table->s == table_share); assert(m_part_info); ref_length= 0; m_mode= mode; m_open_test_lock= test_if_locked; if (get_from_handler_file(name, &table->mem_root, MY_TEST(m_is_clone_of))) DBUG_RETURN(error); name_buffer_ptr= m_name_buffer_ptr; /* Check/update the partition share. */ lock_shared_ha_data(); if (part_share->populate_partition_name_hash(m_part_info)) { unlock_shared_ha_data(); DBUG_RETURN(HA_ERR_INITIALIZATION); } if (!part_share->auto_inc_mutex && table->found_next_number_field) { if (part_share->init_auto_inc_mutex(table_share)) { unlock_shared_ha_data(); DBUG_RETURN(HA_ERR_INITIALIZATION); } } unlock_shared_ha_data(); if (open_partitioning(part_share)) { goto err; } assert(!m_file_tot_parts || m_file_tot_parts == m_tot_parts); if (!m_part_ids_sorted_by_num_of_records) { if (!(m_part_ids_sorted_by_num_of_records= (uint32*) my_malloc(key_memory_ha_partition_part_ids, m_tot_parts * sizeof(uint32), MYF(MY_WME)))) { goto err; } uint32 i; /* Initialize it with all partition ids. */ for (i= 0; i < m_tot_parts; i++) m_part_ids_sorted_by_num_of_records[i]= i; } if (init_partition_bitmaps()) { goto err; } assert(m_part_info); if (m_is_clone_of) { uint i, alloc_len; assert(m_clone_mem_root); /* Allocate an array of handler pointers for the partitions handlers. */ alloc_len= (m_tot_parts + 1) * sizeof(handler*); if (!(m_file= (handler **) alloc_root(m_clone_mem_root, alloc_len))) { error= HA_ERR_INITIALIZATION; goto err_alloc; } memset(m_file, 0, alloc_len); /* Populate them by cloning the original partitions. This also opens them. Note that file->ref is allocated too. */ file= m_is_clone_of->m_file; for (i= 0; i < m_tot_parts; i++) { create_partition_name(name_buff, name, name_buffer_ptr, NORMAL_PART_NAME, FALSE); /* ::clone() will also set ha_share from the original. */ if (!(m_file[i]= file[i]->clone(name_buff, m_clone_mem_root))) { error= HA_ERR_INITIALIZATION; file= &m_file[i]; goto err_handler; } name_buffer_ptr+= strlen(name_buffer_ptr) + 1; } } else { file= m_file; do { create_partition_name(name_buff, name, name_buffer_ptr, NORMAL_PART_NAME, FALSE); if ((error= (*file)->ha_open(table, name_buff, mode, test_if_locked | HA_OPEN_NO_PSI_CALL))) goto err_handler; if (m_file == file) m_num_locks= (*file)->lock_count(); assert(m_num_locks == (*file)->lock_count()); name_buffer_ptr+= strlen(name_buffer_ptr) + 1; } while (*(++file)); } file= m_file; ref_length= (*file)->ref_length; check_table_flags= (((*file)->ha_table_flags() & ~(PARTITION_DISABLED_TABLE_FLAGS)) | (PARTITION_ENABLED_TABLE_FLAGS)); while (*(++file)) { /* MyISAM can have smaller ref_length for partitions with MAX_ROWS set */ set_if_bigger(ref_length, ((*file)->ref_length)); /* Verify that all partitions have the same set of table flags. Mask all flags that partitioning enables/disables. */ if (check_table_flags != (((*file)->ha_table_flags() & ~(PARTITION_DISABLED_TABLE_FLAGS)) | (PARTITION_ENABLED_TABLE_FLAGS))) { error= HA_ERR_INITIALIZATION; /* set file to last handler, so all of them are closed */ file = &m_file[m_tot_parts - 1]; goto err_handler; } } key_used_on_scan= m_file[0]->key_used_on_scan; implicit_emptied= m_file[0]->implicit_emptied; /* Add 2 bytes for partition id in position ref length. ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS */ ref_length+= PARTITION_BYTES_IN_POS; /* Release buffer read from .par file. It will not be reused again after being opened once. */ clear_handler_file(); /* Some handlers update statistics as part of the open call. This will in some cases corrupt the statistics of the partition handler and thus to ensure we have correct statistics we call info from open after calling open on all individual handlers. */ m_handler_status= handler_opened; if (m_part_info->part_expr) m_part_func_monotonicity_info= m_part_info->part_expr->get_monotonicity_info(); else if (m_part_info->list_of_part_fields) m_part_func_monotonicity_info= MONOTONIC_STRICT_INCREASING; info(HA_STATUS_VARIABLE | HA_STATUS_CONST); DBUG_RETURN(0); err_handler: DEBUG_SYNC(ha_thd(), "partition_open_error"); while (file-- != m_file) (*file)->ha_close(); err_alloc: free_partition_bitmaps(); err: close_partitioning(); DBUG_RETURN(error); } /* Disabled since it is not possible to prune yet. without pruning, it need to rebind/unbind every partition in every statement which uses a table from the table cache. Will also use as many PSI_tables as there are partitions. */ #ifdef HAVE_M_PSI_PER_PARTITION void ha_partition::unbind_psi() { uint i; DBUG_ENTER("ha_partition::unbind_psi"); handler::unbind_psi(); for (i= 0; i < m_tot_parts; i++) { assert(m_file[i] != NULL); m_file[i]->unbind_psi(); } DBUG_VOID_RETURN; } void ha_partition::rebind_psi() { uint i; DBUG_ENTER("ha_partition::rebind_psi"); handler::rebind_psi(); for (i= 0; i < m_tot_parts; i++) { assert(m_file[i] != NULL); m_file[i]->rebind_psi(); } DBUG_VOID_RETURN; } #endif /* HAVE_M_PSI_PER_PARTITION */ /** Clone the open and locked partitioning handler. @param mem_root MEM_ROOT to use. @return Pointer to the successfully created clone or NULL @details This function creates a new ha_partition handler as a clone/copy. The original (this) must already be opened and locked. The clone will use the originals m_part_info. It also allocates memory for ref + ref_dup. In ha_partition::open() it will clone its original handlers partitions which will allocate then on the correct MEM_ROOT and also open them. */ handler *ha_partition::clone(const char *name, MEM_ROOT *mem_root) { ha_partition *new_handler; DBUG_ENTER("ha_partition::clone"); new_handler= new (mem_root) ha_partition(ht, table_share, m_part_info, this, mem_root); if (!new_handler) DBUG_RETURN(NULL); /* We will not clone each partition's handler here, it will be done in ha_partition::open() for clones. Also set_ha_share_ref is not needed here, since 1) ha_share is copied in the constructor used above 2) each partition's cloned handler will set it from its original. */ /* Allocate new_handler->ref here because otherwise ha_open will allocate it on this->table->mem_root and we will not be able to reclaim that memory when the clone handler object is destroyed. */ if (!(new_handler->ref= (uchar*) alloc_root(mem_root, ALIGN_SIZE(ref_length)*2))) goto err; if (new_handler->ha_open(table, name, table->db_stat, HA_OPEN_IGNORE_IF_LOCKED | HA_OPEN_NO_PSI_CALL)) goto err; DBUG_RETURN((handler*) new_handler); err: delete new_handler; DBUG_RETURN(NULL); } /* Close handler object SYNOPSIS close() RETURN VALUE >0 Error code 0 Success DESCRIPTION Called from sql_base.cc, sql_select.cc, and table.cc. In sql_select.cc it is only used to close up temporary tables or during the process where a temporary table is converted over to being a myisam table. For sql_base.cc look at close_data_tables(). */ int ha_partition::close(void) { handler **file; DBUG_ENTER("ha_partition::close"); assert(table->s == table_share); close_partitioning(); free_partition_bitmaps(); assert(m_part_info); file= m_file; do { (*file)->ha_close(); } while (*(++file)); m_handler_status= handler_closed; DBUG_RETURN(0); } /**************************************************************************** MODULE start/end statement ****************************************************************************/ /* A number of methods to define various constants for the handler. In the case of the partition handler we need to use some max and min of the underlying handlers in most cases. */ /* Set external locks on table SYNOPSIS external_lock() thd Thread object lock_type Type of external lock RETURN VALUE >0 Error code 0 Success DESCRIPTION First you should go read the section "locking functions for mysql" in lock.cc to understand this. This create a lock on the table. If you are implementing a storage engine that can handle transactions look at ha_berkeley.cc to see how you will want to go about doing this. Otherwise you should consider calling flock() here. Originally this method was used to set locks on file level to enable several MySQL Servers to work on the same data. For transactional engines it has been "abused" to also mean start and end of statements to enable proper rollback of statements and transactions. When LOCK TABLES has been issued the start_stmt method takes over the role of indicating start of statement but in this case there is no end of statement indicator(?). Called from lock.cc by lock_external() and unlock_external(). Also called from sql_table.cc by copy_data_between_tables(). */ int ha_partition::external_lock(THD *thd, int lock_type) { uint error; uint i, first_used_partition; MY_BITMAP *used_partitions; DBUG_ENTER("ha_partition::external_lock"); assert(!m_auto_increment_lock && !m_auto_increment_safe_stmt_log_lock); if (lock_type == F_UNLCK) used_partitions= &m_locked_partitions; else used_partitions= &(m_part_info->lock_partitions); first_used_partition= bitmap_get_first_set(used_partitions); for (i= first_used_partition; i < m_tot_parts; i= bitmap_get_next_set(used_partitions, i)) { DBUG_PRINT("info", ("external_lock(thd, %d) part %d", lock_type, i)); if ((error= m_file[i]->ha_external_lock(thd, lock_type))) { if (lock_type != F_UNLCK) goto err_handler; } DBUG_PRINT("info", ("external_lock part %u lock %d", i, lock_type)); if (lock_type != F_UNLCK) bitmap_set_bit(&m_locked_partitions, i); } if (lock_type == F_UNLCK) { bitmap_clear_all(used_partitions); } else { /* Add touched partitions to be included in reset(). */ bitmap_union(&m_partitions_to_reset, used_partitions); } DBUG_RETURN(0); err_handler: uint j; for (j= first_used_partition; j < i; j= bitmap_get_next_set(&m_locked_partitions, j)) { (void) m_file[j]->ha_external_lock(thd, F_UNLCK); } bitmap_clear_all(&m_locked_partitions); DBUG_RETURN(error); } /* Get the lock(s) for the table and perform conversion of locks if needed SYNOPSIS store_lock() thd Thread object to Lock object array lock_type Table lock type RETURN VALUE >0 Error code 0 Success DESCRIPTION The idea with handler::store_lock() is the following: The statement decided which locks we should need for the table for updates/deletes/inserts we get WRITE locks, for SELECT... we get read locks. Before adding the lock into the table lock handler (see thr_lock.c) mysqld calls store lock with the requested locks. Store lock can now modify a write lock to a read lock (or some other lock), ignore the lock (if we don't want to use MySQL table locks at all) or add locks for many tables (like we do when we are using a MERGE handler). Berkeley DB for partition changes all WRITE locks to TL_WRITE_ALLOW_WRITE (which signals that we are doing WRITES, but we are still allowing other reader's and writer's. When releasing locks, store_lock() is also called. In this case one usually doesn't have to do anything. store_lock is called when holding a global mutex to ensure that only one thread at a time changes the locking information of tables. In some exceptional cases MySQL may send a request for a TL_IGNORE; This means that we are requesting the same lock as last time and this should also be ignored. (This may happen when someone does a flush table when we have opened a part of the tables, in which case mysqld closes and reopens the tables and tries to get the same locks as last time). In the future we will probably try to remove this. Called from lock.cc by get_lock_data(). */ THR_LOCK_DATA **ha_partition::store_lock(THD *thd, THR_LOCK_DATA **to, enum thr_lock_type lock_type) { uint i; DBUG_ENTER("ha_partition::store_lock"); assert(thd == current_thd); /* This can be called from get_lock_data() in mysql_lock_abort_for_thread(), even when thd != table->in_use. In that case don't use partition pruning, but use all partitions instead to avoid using another threads structures. */ if (thd != table->in_use) { for (i= 0; i < m_tot_parts; i++) to= m_file[i]->store_lock(thd, to, lock_type); } else { for (i= bitmap_get_first_set(&(m_part_info->lock_partitions)); i < m_tot_parts; i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) { DBUG_PRINT("info", ("store lock %d iteration", i)); to= m_file[i]->store_lock(thd, to, lock_type); } } DBUG_RETURN(to); } /* Start a statement when table is locked SYNOPSIS start_stmt() thd Thread object lock_type Type of external lock RETURN VALUE >0 Error code 0 Success DESCRIPTION This method is called instead of external lock when the table is locked before the statement is executed. */ int ha_partition::start_stmt(THD *thd, thr_lock_type lock_type) { int error= 0; uint i; /* Assert that read_partitions is included in lock_partitions */ assert(bitmap_is_subset(&m_part_info->read_partitions, &m_part_info->lock_partitions)); /* m_locked_partitions is set in previous external_lock/LOCK TABLES. Current statement's lock requests must not include any partitions not previously locked. */ assert(bitmap_is_subset(&m_part_info->lock_partitions, &m_locked_partitions)); DBUG_ENTER("ha_partition::start_stmt"); for (i= bitmap_get_first_set(&(m_part_info->lock_partitions)); i < m_tot_parts; i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) { if ((error= m_file[i]->start_stmt(thd, lock_type))) break; /* Add partition to be called in reset(). */ bitmap_set_bit(&m_partitions_to_reset, i); } DBUG_RETURN(error); } /** Get number of lock objects returned in store_lock @returns Number of locks returned in call to store_lock @desc Returns the number of store locks needed in call to store lock. We return number of partitions we will lock multiplied with number of locks needed by each partition. Assists the above functions in allocating sufficient space for lock structures. */ uint ha_partition::lock_count() const { DBUG_ENTER("ha_partition::lock_count"); /* The caller want to know the upper bound, to allocate enough memory. There is no performance lost if we simply return maximum number locks needed, only some minor over allocation of memory in get_lock_data(). Also notice that this may be called for another thread != table->in_use, when mysql_lock_abort_for_thread() is called. So this is more safe, then using number of partitions after pruning. */ DBUG_RETURN(m_tot_parts * m_num_locks); } /* Unlock last accessed row SYNOPSIS unlock_row() RETURN VALUE NONE DESCRIPTION Record currently processed was not in the result set of the statement and is thus unlocked. Used for UPDATE and DELETE queries. */ void ha_partition::unlock_row() { DBUG_ENTER("ha_partition::unlock_row"); m_file[m_last_part]->unlock_row(); DBUG_VOID_RETURN; } /** Check if semi consistent read was used SYNOPSIS was_semi_consistent_read() RETURN VALUE TRUE Previous read was a semi consistent read FALSE Previous read was not a semi consistent read DESCRIPTION See handler.h: In an UPDATE or DELETE, if the row under the cursor was locked by another transaction, and the engine used an optimistic read of the last committed row value under the cursor, then the engine returns 1 from this function. MySQL must NOT try to update this optimistic value. If the optimistic value does not match the WHERE condition, MySQL can decide to skip over this row. Currently only works for InnoDB. This can be used to avoid unnecessary lock waits. If this method returns nonzero, it will also signal the storage engine that the next read will be a locking re-read of the row. */ bool ha_partition::was_semi_consistent_read() { DBUG_ENTER("ha_partition::was_semi_consistent_read"); assert(m_last_part < m_tot_parts && m_part_info->is_partition_used(m_last_part)); DBUG_RETURN(m_file[m_last_part]->was_semi_consistent_read()); } /** Use semi consistent read if possible SYNOPSIS try_semi_consistent_read() yes Turn on semi consistent read RETURN VALUE NONE DESCRIPTION See handler.h: Tell the engine whether it should avoid unnecessary lock waits. If yes, in an UPDATE or DELETE, if the row under the cursor was locked by another transaction, the engine may try an optimistic read of the last committed row value under the cursor. Note: prune_partitions are already called before this call, so using pruning is OK. */ void ha_partition::try_semi_consistent_read(bool yes) { uint i; DBUG_ENTER("ha_partition::try_semi_consistent_read"); i= m_part_info->get_first_used_partition(); assert(i != MY_BIT_NONE); for (; i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { m_file[i]->try_semi_consistent_read(yes); } DBUG_VOID_RETURN; } /**************************************************************************** MODULE change record ****************************************************************************/ /** Insert a row to the partition. @param part_id Partition to insert into. @param buf The row in MySQL Row Format. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::write_row_in_part(uint part_id, uchar *buf) { int error; THD *thd= ha_thd(); DBUG_ENTER("ha_partition::write_row_in_part"); m_last_part= part_id; start_part_bulk_insert(thd, part_id); tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ error= m_file[part_id]->ha_write_row(buf); reenable_binlog(thd); DBUG_RETURN(error); } int ha_partition::update_row_in_part(uint part_id, const uchar *old_data, uchar *new_data) { int error; THD *thd= ha_thd(); DBUG_ENTER("ha_partition::update_row_in_part"); start_part_bulk_insert(thd, part_id); tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ error= m_file[part_id]->ha_update_row(old_data, new_data); reenable_binlog(thd); DBUG_RETURN(error); } /** Delete an existing row in the partition. This will delete a row. buf will contain a copy of the row to be deleted. The server will call this right after the current row has been read (from either a previous rnd_xxx() or index_xxx() call). If you keep a pointer to the last row or can access a primary key it will make doing the deletion quite a bit easier. Keep in mind that the server does no guarantee consecutive deletions. ORDER BY clauses can be used. buf is either record[0] or record[1] @param part_id The partition to delete the row from. @param buf The record in MySQL Row Format. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::delete_row_in_part(uint part_id, const uchar *buf) { int error; THD *thd= ha_thd(); DBUG_ENTER("ha_partition::delete_row_in_part"); m_last_part= part_id; /* Do not replicate low level changes, already registered in ha_* wrapper. */ tmp_disable_binlog(thd); error= m_file[part_id]->ha_delete_row(buf); reenable_binlog(thd); DBUG_RETURN(error); } /* Delete all rows in a table SYNOPSIS delete_all_rows() RETURN VALUE >0 Error Code 0 Success DESCRIPTION Used to delete all rows in a table. Both for cases of truncate and for cases where the optimizer realizes that all rows will be removed as a result of a SQL statement. Called from item_sum.cc by Item_func_group_concat::clear(), Item_sum_count_distinct::clear(), and Item_func_group_concat::clear(). Called from sql_delete.cc by mysql_delete(). Called from sql_select.cc by JOIN::reset(). Called from sql_union.cc by st_select_lex_unit::exec(). */ int ha_partition::delete_all_rows() { int error; uint i; DBUG_ENTER("ha_partition::delete_all_rows"); for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { /* Can be pruned, like DELETE FROM t PARTITION (pX) */ if ((error= m_file[i]->ha_delete_all_rows())) DBUG_RETURN(error); } DBUG_RETURN(0); } /** Manually truncate the table. @retval 0 Success. @retval > 0 Error code. */ int ha_partition::truncate() { int error; handler **file; DBUG_ENTER("ha_partition::truncate"); /* TRUNCATE also means resetting auto_increment. Hence, reset it so that it will be initialized again at the next use. */ if (table->found_next_number_field) { // TODO: Create Partition_helper::reset_auto_inc(). lock_auto_increment(); part_share->next_auto_inc_val= 0; part_share->auto_inc_initialized= false; unlock_auto_increment(); } file= m_file; do { if ((error= (*file)->ha_truncate())) DBUG_RETURN(error); } while (*(++file)); DBUG_RETURN(0); } /** Truncate a set of specific partitions. @remark Auto increment value will be truncated in that partition as well! ALTER TABLE t TRUNCATE PARTITION ... */ int ha_partition::truncate_partition_low() { int error= 0; List_iterator<partition_element> part_it(m_part_info->partitions); uint i= 0; DBUG_ENTER("ha_partition::truncate_partition"); /* TRUNCATE also means resetting auto_increment. Hence, reset it so that it will be initialized again at the next use. */ if (table->found_next_number_field) { lock_auto_increment(); part_share->next_auto_inc_val= 0; part_share->auto_inc_initialized= false; unlock_auto_increment(); } for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { DBUG_PRINT("info", ("truncate partition %u", i)); if ((error= m_file[i]->ha_truncate())) break; } if (error) { /* Reset to PART_NORMAL. */ set_all_part_state(m_part_info, PART_NORMAL); } DBUG_RETURN(error); } /* Start a large batch of insert rows SYNOPSIS start_bulk_insert() rows Number of rows to insert RETURN VALUE NONE DESCRIPTION rows == 0 means we will probably insert many rows */ void ha_partition::start_bulk_insert(ha_rows rows) { DBUG_ENTER("ha_partition::start_bulk_insert"); m_bulk_inserted_rows= 0; bitmap_clear_all(&m_bulk_insert_started); /* use the last bit for marking if bulk_insert_started was called */ bitmap_set_bit(&m_bulk_insert_started, m_tot_parts); DBUG_VOID_RETURN; } /* Check if start_bulk_insert has been called for this partition, if not, call it and mark it called */ void ha_partition::start_part_bulk_insert(THD *thd, uint part_id) { long old_buffer_size; if (!bitmap_is_set(&m_bulk_insert_started, part_id) && bitmap_is_set(&m_bulk_insert_started, m_tot_parts)) { assert(bitmap_is_set(&(m_part_info->lock_partitions), part_id)); old_buffer_size= thd->variables.read_buff_size; /* Update read_buffer_size for this partition */ thd->variables.read_buff_size= estimate_read_buffer_size(old_buffer_size); m_file[part_id]->ha_start_bulk_insert(guess_bulk_insert_rows()); bitmap_set_bit(&m_bulk_insert_started, part_id); thd->variables.read_buff_size= old_buffer_size; } m_bulk_inserted_rows++; } /* Estimate the read buffer size for each partition. SYNOPSIS ha_partition::estimate_read_buffer_size() original_size read buffer size originally set for the server RETURN VALUE estimated buffer size. DESCRIPTION If the estimated number of rows to insert is less than 10 (but not 0) the new buffer size is same as original buffer size. In case of first partition of when partition function is monotonic new buffer size is same as the original buffer size. For rest of the partition total buffer of 10*original_size is divided equally if number of partition is more than 10 other wise each partition will be allowed to use original buffer size. */ long ha_partition::estimate_read_buffer_size(long original_size) { /* If number of rows to insert is less than 10, but not 0, return original buffer size. */ if (estimation_rows_to_insert && (estimation_rows_to_insert < 10)) return (original_size); /* If first insert/partition and monotonic partition function, allow using buffer size originally set. */ if (!m_bulk_inserted_rows && m_part_func_monotonicity_info != NON_MONOTONIC && m_tot_parts > 1) return original_size; /* Allow total buffer used in all partition to go up to 10*read_buffer_size. 11*read_buffer_size in case of monotonic partition function. */ if (m_tot_parts < 10) return original_size; return (original_size * 10 / m_tot_parts); } /* Try to predict the number of inserts into this partition. If less than 10 rows (including 0 which means Unknown) just give that as a guess If monotonic partitioning function was used guess that 50 % of the inserts goes to the first partition For all other cases, guess on equal distribution between the partitions */ ha_rows ha_partition::guess_bulk_insert_rows() { DBUG_ENTER("guess_bulk_insert_rows"); if (estimation_rows_to_insert < 10) DBUG_RETURN(estimation_rows_to_insert); /* If first insert/partition and monotonic partition function, guess 50%. */ if (!m_bulk_inserted_rows && m_part_func_monotonicity_info != NON_MONOTONIC && m_tot_parts > 1) DBUG_RETURN(estimation_rows_to_insert / 2); /* Else guess on equal distribution (+1 is to avoid returning 0/Unknown) */ if (m_bulk_inserted_rows < estimation_rows_to_insert) DBUG_RETURN(((estimation_rows_to_insert - m_bulk_inserted_rows) / m_tot_parts) + 1); /* The estimation was wrong, must say 'Unknown' */ DBUG_RETURN(0); } /** Finish a large batch of insert rows. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::end_bulk_insert() { int error= 0; uint i; DBUG_ENTER("ha_partition::end_bulk_insert"); if (!bitmap_is_set(&m_bulk_insert_started, m_tot_parts)) { assert(0); DBUG_RETURN(error); } for (i= bitmap_get_first_set(&m_bulk_insert_started); i < m_tot_parts; i= bitmap_get_next_set(&m_bulk_insert_started, i)) { int tmp; if ((tmp= m_file[i]->ha_end_bulk_insert())) error= tmp; } bitmap_clear_all(&m_bulk_insert_started); DBUG_RETURN(error); } /**************************************************************************** MODULE full table scan ****************************************************************************/ /** Initialize partition for random reads. rnd_init() is called when the server wants the storage engine to do a table scan or when the server wants to access data through rnd_pos. When scan is used we will scan one handler partition at a time. When preparing for rnd_pos we will initialize all handler partitions. No extra cache handling is needed when scanning is not performed. Before initializing we will call rnd_end to ensure that we clean up from any previous incarnation of a table scan. @param part_id partition to initialize. @param scan false for initialize for random reads through rnd_pos() true for initialize for random scan through rnd_next(). @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::rnd_init_in_part(uint part_id, bool scan) { if (scan) { /* We have a partition and we are scanning with rnd_next so we bump our cache. */ late_extra_cache(part_id); } return m_file[part_id]->ha_rnd_init(scan); } /** End of a partition scan. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::rnd_end_in_part(uint part_id, bool scan) { if (scan && m_extra_cache_part_id != NO_CURRENT_PART_ID) { late_extra_no_cache(part_id); } return m_file[part_id]->ha_rnd_end(); } /** Read next row during full partition scan (scan in random row order). This is called for each row of the table scan. When you run out of records you should return HA_ERR_END_OF_FILE. The Field structure for the table is the key to getting data into buf in a manner that will allow the server to understand it. @param[in] part_id Partition to read from. @param[in,out] buf buffer that should be filled with data. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::rnd_next_in_part(uint part_id, uchar *buf) { return m_file[part_id]->ha_rnd_next(buf); } /** Save position of current row. position() is called after each call to rnd_next() if the data needs to be ordered. The server uses ref to store data. ref_length in the above case is the size needed to store current_position. ref is just a byte array that the server will maintain. If you are using offsets to mark rows, then current_position should be the offset. If it is a primary key like in InnoDB, then it needs to be a primary key. @param record Current record in MySQL Row Format. @note m_last_part must be set (normally done by Partition_helper::return_top_record()). */ void ha_partition::position_in_last_part(uchar *ref, const uchar *record) { handler *file= m_file[m_last_part]; file->position(record); memcpy(ref, file->ref, file->ref_length); /* MyISAM partitions can have different ref_length depending on MAX_ROWS! */ uint pad_length= ref_length - PARTITION_BYTES_IN_POS - file->ref_length; if (pad_length) memset((ref + PARTITION_BYTES_IN_POS + file->ref_length), 0, pad_length); } /** Read row from partition using position. This is like rnd_next, but you are given a position to use to determine the row. The position will be pointing to data of length handler::ref_length that handler::ref was set by position(record). Tables clustered on primary key usually use the full primary key as reference (like InnoDB). Heap based tables usually returns offset in heap file (like MyISAM). @param[in] part_id Partition to read from. @param[in,out] buf Buffer to fill with record in MySQL format. @param[in] pos Position (data pointed to from ::ref) from position(). @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::rnd_pos_in_part(uint part_id, uchar *buf, uchar *pos) { return m_file[part_id]->ha_rnd_pos(buf, pos); } /**************************************************************************** MODULE index scan ****************************************************************************/ /* Positions an index cursor to the index specified in the handle. Fetches the row if available. If the key value is null, begin at the first key of the index. */ /** Compare key and rowid. Helper function for sorting records in the priority queue. a/b points to table->record[0] rows which must have the key fields set. The bytes before a and b store the handler::ref. This is used for comparing/sorting rows first according to KEY and if same KEY, by handler::ref (rowid). @param key_info Null terminated array of index information @param a Pointer to record+ref in first record @param b Pointer to record+ref in second record @return Return value is SIGN(first_rec - second_rec) @retval 0 Keys are equal @retval -1 second_rec is greater than first_rec @retval +1 first_rec is greater than second_rec */ static int key_and_ref_cmp(KEY** key_info, uchar *a, uchar *b) { int cmp= key_rec_cmp(key_info, a, b); if (cmp) return cmp; /* We must compare by handler::ref, which is added before the record, in the priority queue. */ KEY **key = key_info; uint ref_length= (*key)->table->file->ref_length; return (*key)->table->file->cmp_ref(a - ref_length, b - ref_length); } /** Initialize partition before start of index scan. @param part Partition to initialize the index in. @param inx Index number. @param sorted Is rows to be returned in sorted order. @return Operation status @retval 0 Success @retval != 0 Error code */ int ha_partition::index_init_in_part(uint part, uint keynr, bool sorted) { return m_file[part]->ha_index_init(keynr, sorted); } /** End of index scan in a partition. index_end_in_part is called at the end of an index scan to clean up any things needed to clean up. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_end_in_part(uint part) { return m_file[part]->ha_index_end(); } /** Read one record in an index scan and start an index scan in one partition. index_read_map_in_part starts a new index scan using a start key. index_read_map_in_part can be restarted without calling index_end on the previous index scan and without calling index_init. In this case the index_read_map_in_part is on the same index as the previous index_scan. This is particularly used in conjunction with multi read ranges. @param[in] part Partition to read from. @param[in,out] buf Read row in MySQL Row Format @param[in] key Key parts in consecutive order @param[in] keypart_map Which part of key is used @param[in] find_flag What type of key condition is used @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_read_map_in_part(uint part, uchar *buf, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag) { return m_file[part]->ha_index_read_map(buf, key, keypart_map, find_flag); } /** Start an index scan from leftmost record and return first record. index_first() asks for the first key in the index. This is similar to index_read except that there is no start key since the scan starts from the leftmost entry and proceeds forward with index_next. @param[in] part Partition to read from. @param[in,out] buf Read row in MySQL Row Format. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_first_in_part(uint part, uchar* buf) { return m_file[part]->ha_index_first(buf); } /** Start an index scan from rightmost record and return first record. index_last() asks for the last key in the index. This is similar to index_read except that there is no start key since the scan starts from the rightmost entry and proceeds forward with index_prev. @param[in] part Partition to read from. @param[in,out] buf Read row in MySQL Row Format. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_last_in_part(uint part, uchar *buf) { return m_file[part]->ha_index_last(buf); } /** Read last using key. This is used in join_read_last_key to optimize away an ORDER BY. Can only be used on indexes supporting HA_READ_ORDER. @param[in,out] buf Read row in MySQL Row Format @param[in] key Key @param[in] keypart_map Which part of key is used @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_read_last_map_in_part(uint part, uchar *buf, const uchar *key, key_part_map keypart_map) { return m_file[part]->ha_index_read_last_map(buf, key, keypart_map); } /** Read index by key and keymap in a partition. @param[in] part Index to read from @param[in,out] buf Read row in MySQL Row Format @param[in] index Index to read from @param[in] key Key @param[in] keypart_map Which part of key is used @param[in] find_flag Direction/how to search. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_read_idx_map_in_part(uint part, uchar *buf, uint index, const uchar *key, key_part_map keypart_map, enum ha_rkey_function find_flag) { return m_file[part]->ha_index_read_idx_map(buf, index, key, keypart_map, find_flag); } /** Read next record in a forward index scan. Used to read forward through the index (left to right, low to high). @param[in] part Partition to read from. @param[in,out] buf Read row in MySQL Row Format. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_next_in_part(uint part, uchar *buf) { return m_file[part]->ha_index_next(buf); } /** Read next same record in partition. This routine is used to read the next but only if the key is the same as supplied in the call. @param[in] part Partition to read from. @param[in,out] buf Read row in MySQL Row Format. @param[in] key Key. @param[in] keylen Length of key. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_next_same_in_part(uint part, uchar *buf, const uchar *key, uint length) { return m_file[part]->ha_index_next_same(buf, key, length); } /** Read next record when performing index scan backwards. Used to read backwards through the index (right to left, high to low). @param[in,out] buf Read row in MySQL Row Format. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::index_prev_in_part(uint part, uchar *buf) { return m_file[part]->ha_index_prev(buf); } /** Start a read of one range with start and end key. @param part_id Partition to start in. @param start_key Specification of start key. @param end_key Specification of end key. @param eq_range_arg Is it equal range. @param sorted Should records be returned in sorted order. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::read_range_first_in_part(uint part_id, uchar *buf, const key_range *start_key, const key_range *end_key, bool eq_range_arg, bool sorted) { int error; error= m_file[part_id]->read_range_first(start_key, end_key, eq_range_arg, sorted); if (!error && buf != NULL) { memcpy(buf, table->record[0], m_rec_length); } return error; } /** Read next record in read of a range with start and end key in partition. @param part Partition to read from. @return Operation status. @retval 0 Success @retval != 0 Error code */ int ha_partition::read_range_next_in_part(uint part, uchar *buf) { int error; error= m_file[part]->read_range_next(); if (!error && buf != NULL) { memcpy(buf, table->record[0], m_rec_length); } return error; } /**************************************************************************** MODULE information calls ****************************************************************************/ /* These are all first approximations of the extra, info, scan_time and read_time calls */ /** Helper function for sorting according to number of rows in descending order. */ int ha_partition::compare_number_of_records(ha_partition *me, const uint32 *a, const uint32 *b) { handler **file= me->m_file; /* Note: sorting in descending order! */ if (file[*a]->stats.records > file[*b]->stats.records) return -1; if (file[*a]->stats.records < file[*b]->stats.records) return 1; return 0; } /* General method to gather info from handler SYNOPSIS info() flag Specifies what info is requested RETURN VALUE NONE DESCRIPTION ::info() is used to return information to the optimizer. Currently this table handler doesn't implement most of the fields really needed. SHOW also makes use of this data Another note, if your handler doesn't proved exact record count, you will probably want to have the following in your code: if (records < 2) records = 2; The reason is that the server will optimize for cases of only a single record. If in a table scan you don't know the number of records it will probably be better to set records to two so you can return as many records as you need. Along with records a few more variables you may wish to set are: records deleted data_file_length index_file_length delete_length check_time Take a look at the public variables in handler.h for more information. Called in: filesort.cc ha_heap.cc item_sum.cc opt_sum.cc sql_delete.cc sql_delete.cc sql_derived.cc sql_select.cc sql_select.cc sql_select.cc sql_select.cc sql_select.cc sql_show.cc sql_show.cc sql_show.cc sql_show.cc sql_table.cc sql_union.cc sql_update.cc Some flags that are not implemented HA_STATUS_POS: This parameter is never used from the MySQL Server. It is checked in a place in MyISAM so could potentially be used by MyISAM specific programs. HA_STATUS_NO_LOCK: This is declared and often used. It's only used by MyISAM. It means that MySQL doesn't need the absolute latest statistics information. This may save the handler from doing internal locks while retrieving statistics data. */ int ha_partition::info(uint flag) { uint no_lock_flag= flag & HA_STATUS_NO_LOCK; uint extra_var_flag= flag & HA_STATUS_VARIABLE_EXTRA; int res, error= 0; DBUG_ENTER("ha_partition::info"); #ifndef NDEBUG if (bitmap_is_set_all(&(m_part_info->read_partitions))) DBUG_PRINT("info", ("All partitions are used")); #endif /* NDEBUG */ if (flag & HA_STATUS_AUTO) { DBUG_PRINT("info", ("HA_STATUS_AUTO")); if (!table->found_next_number_field) { stats.auto_increment_value= 0; } else { /* Must lock to avoid two concurrent initializations. */ lock_auto_increment(); if (part_share->auto_inc_initialized) { stats.auto_increment_value= part_share->next_auto_inc_val; } else { error= initialize_auto_increment(no_lock_flag != 0); } unlock_auto_increment(); } } if (flag & HA_STATUS_VARIABLE) { uint i; DBUG_PRINT("info", ("HA_STATUS_VARIABLE")); /* Calculates statistical variables records: Estimate of number records in table We report sum (always at least 2 if not empty) deleted: Estimate of number holes in the table due to deletes We report sum data_file_length: Length of data file, in principle bytes in table We report sum index_file_length: Length of index file, in principle bytes in indexes in the table We report sum delete_length: Length of free space easily used by new records in table We report sum mean_record_length:Mean record length in the table We calculate this check_time: Time of last check (only applicable to MyISAM) We report last time of all underlying handlers */ handler *file; stats.records= 0; stats.deleted= 0; stats.data_file_length= 0; stats.index_file_length= 0; stats.check_time= 0; stats.delete_length= 0; for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { file= m_file[i]; res= file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag); if (res && !error) { error= res; } stats.records+= file->stats.records; stats.deleted+= file->stats.deleted; stats.data_file_length+= file->stats.data_file_length; stats.index_file_length+= file->stats.index_file_length; stats.delete_length+= file->stats.delete_length; if (file->stats.check_time > stats.check_time) stats.check_time= file->stats.check_time; } if (stats.records && stats.records < 2 && !(m_file[0]->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)) stats.records= 2; if (stats.records > 0) stats.mean_rec_length= (ulong) (stats.data_file_length / stats.records); else stats.mean_rec_length= 0; } if (flag & HA_STATUS_CONST) { DBUG_PRINT("info", ("HA_STATUS_CONST")); /* Recalculate loads of constant variables. MyISAM also sets things directly on the table share object. Check whether this should be fixed since handlers should not change things directly on the table object. Monty comment: This should NOT be changed! It's the handlers responsibility to correct table->s->keys_xxxx information if keys have been disabled. The most important parameters set here is records per key on all indexes. block_size and primar key ref_length. For each index there is an array of rec_per_key. As an example if we have an index with three attributes a,b and c we will have an array of 3 rec_per_key. rec_per_key[0] is an estimate of number of records divided by number of unique values of the field a. rec_per_key[1] is an estimate of the number of records divided by the number of unique combinations of the fields a and b. rec_per_key[2] is an estimate of the number of records divided by the number of unique combinations of the fields a,b and c. Many handlers only set the value of rec_per_key when all fields are bound (rec_per_key[2] in the example above). If the handler doesn't support statistics, it should set all of the above to 0. We first scans through all partitions to get the one holding most rows. We will then allow the handler with the most rows to set the rec_per_key and use this as an estimate on the total table. max_data_file_length: Maximum data file length We ignore it, is only used in SHOW TABLE STATUS max_index_file_length: Maximum index file length We ignore it since it is never used block_size: Block size used We set it to the value of the first handler ref_length: We set this to the value calculated and stored in local object create_time: Creation time of table So we calculate these constants by using the variables from the handler with most rows. */ handler *file, **file_array; ulonglong max_records= 0; uint32 i= 0; uint32 handler_instance= 0; file_array= m_file; do { file= *file_array; /* Get variables if not already done */ if (!(flag & HA_STATUS_VARIABLE) || !m_part_info->is_partition_used(file_array - m_file)) { res= file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag); if (res && !error) { error= res; } } if (file->stats.records > max_records) { max_records= file->stats.records; handler_instance= i; } i++; } while (*(++file_array)); /* Sort the array of part_ids by number of records in in descending order. */ my_qsort2((void*) m_part_ids_sorted_by_num_of_records, m_tot_parts, sizeof(uint32), (qsort2_cmp) compare_number_of_records, this); file= m_file[handler_instance]; res= file->info(HA_STATUS_CONST | no_lock_flag); if (res && !error) { error= res; } stats.block_size= file->stats.block_size; stats.create_time= file->stats.create_time; } if (flag & HA_STATUS_ERRKEY) { handler *file= m_file[m_last_part]; DBUG_PRINT("info", ("info: HA_STATUS_ERRKEY")); /* This flag is used to get index number of the unique index that reported duplicate key We will report the errkey on the last handler used and ignore the rest Note: all engines does not support HA_STATUS_ERRKEY, so set errkey. */ file->errkey= errkey; res= file->info(HA_STATUS_ERRKEY | no_lock_flag); if (res && !error) { error= res; } errkey= file->errkey; } if (flag & HA_STATUS_TIME) { DBUG_PRINT("info", ("info: HA_STATUS_TIME")); /* This flag is used to set the latest update time of the table. Used by SHOW commands We will report the maximum of these times */ stats.update_time= 0; for (uint i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { handler *file= m_file[i]; res= file->info(HA_STATUS_TIME | no_lock_flag); if (res && !error) { error= res; } if (file->stats.update_time > stats.update_time) stats.update_time= file->stats.update_time; } } DBUG_RETURN(error); } void ha_partition::get_dynamic_partition_info(ha_statistics *stat_info, ha_checksum *check_sum, uint part_id) { handler *file= m_file[part_id]; assert(bitmap_is_set(&(m_part_info->read_partitions), part_id)); file->info(HA_STATUS_TIME | HA_STATUS_VARIABLE | HA_STATUS_VARIABLE_EXTRA | HA_STATUS_NO_LOCK); stat_info->records= file->stats.records; stat_info->mean_rec_length= file->stats.mean_rec_length; stat_info->data_file_length= file->stats.data_file_length; stat_info->max_data_file_length= file->stats.max_data_file_length; stat_info->index_file_length= file->stats.index_file_length; stat_info->delete_length= file->stats.delete_length; stat_info->create_time= static_cast<ulong>(file->stats.create_time); stat_info->update_time= file->stats.update_time; stat_info->check_time= file->stats.check_time; *check_sum= 0; if (file->ha_table_flags() & HA_HAS_CHECKSUM) *check_sum= file->checksum(); return; } /** General function to prepare handler for certain behavior. @param[in] operation operation to execute @return status @retval 0 success @retval >0 error code @detail extra() is called whenever the server wishes to send a hint to the storage engine. The MyISAM engine implements the most hints. We divide the parameters into the following categories: 1) Operations used by most handlers 2) Operations used by some non-MyISAM handlers 3) Operations used only by MyISAM 4) Operations only used by temporary tables for query processing 5) Operations only used by MyISAM internally 6) Operations not used at all 7) Operations only used by federated tables for query processing 8) Operations only used by NDB 9) Operations only used by MERGE 10) Operations only used by InnoDB 11) Operations only used by partitioning The partition handler need to handle category 1), 2), 3), 10) and 11). 1) Operations used by most handlers ----------------------------------- HA_EXTRA_RESET: This option is used by most handlers and it resets the handler state to the same state as after an open call. This includes releasing any READ CACHE or WRITE CACHE or other internal buffer used. It is called from the reset method in the handler interface. There are three instances where this is called. 1) After completing a INSERT ... SELECT ... query the handler for the table inserted into is reset 2) It is called from close_thread_table which in turn is called from close_thread_tables except in the case where the tables are locked in which case ha_commit_stmt is called instead. It is only called from here if refresh_version hasn't changed and the table is not an old table when calling close_thread_table. close_thread_tables is called from many places as a general clean up function after completing a query. 3) It is called when deleting the QUICK_RANGE_SELECT object if the QUICK_RANGE_SELECT object had its own handler object. It is called immediatley before close of this local handler object. HA_EXTRA_KEYREAD: HA_EXTRA_NO_KEYREAD: These parameters are used to provide an optimisation hint to the handler. If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for many handlers this means that the index-only scans can be used and it is not necessary to use the real records to satisfy this part of the query. Index-only scans is a very important optimisation for disk-based indexes. For main-memory indexes most indexes contain a reference to the record and thus KEYREAD only says that it is enough to read key fields. HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET will disable this option. The handler will set HA_KEYREAD_ONLY in its table flags to indicate this feature is supported. HA_EXTRA_FLUSH: Indication to flush tables to disk, is supposed to be used to ensure disk based tables are flushed at end of query execution. Currently is never used. HA_EXTRA_PREPARE_FOR_RENAME: Informs the handler we are about to attempt a rename of the table. For handlers that have share open files (MyISAM key-file and Archive writer) they must close the files before rename is possible on Windows. This handler will only forward this call, since during ALTER TABLE ... ADD/DROP/REORGANIZE/COALESCE/... PARTITION we will close and remove all instances before rename/drop and does not need special treatment for this flag. HA_EXTRA_FORCE_REOPEN: Only used by MyISAM and Archive, called when altering table, closing tables to enforce a reopen of the table files. This handler will only forward this call, since during ALTER TABLE ... ADD/DROP/REORGANIZE/COALESCE/... PARTITION we will close and remove all instances before rename/drop and does not need special treatment for this flag. 2) Operations used by some non-MyISAM handlers ---------------------------------------------- HA_EXTRA_KEYREAD_PRESERVE_FIELDS: This is a strictly InnoDB feature that is more or less undocumented. When it is activated InnoDB copies field by field from its fetch cache instead of all fields in one memcpy. Have no idea what the purpose of this is. Cut from include/my_base.h: When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep other fields intact. When this is off (by default) InnoDB will use memcpy to overwrite entire row. HA_EXTRA_IGNORE_DUP_KEY: HA_EXTRA_NO_IGNORE_DUP_KEY: Informs the handler to we will not stop the transaction if we get an duplicate key errors during insert/upate. Always called in pair, triggered by INSERT IGNORE and other similar SQL constructs. Not used by MyISAM. 3) Operations used only by MyISAM --------------------------------- HA_EXTRA_NORMAL: Only used in MyISAM to reset quick mode, not implemented by any other handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET. It is called after completing a successful DELETE query if the QUICK option is set. HA_EXTRA_QUICK: When the user does DELETE QUICK FROM table where-clause; this extra option is called before the delete query is performed and HA_EXTRA_NORMAL is called after the delete query is completed. Temporary tables used internally in MySQL always set this option The meaning of quick mode is that when deleting in a B-tree no merging of leafs is performed. This is a common method and many large DBMS's actually only support this quick mode since it is very difficult to merge leaves in a tree used by many threads concurrently. HA_EXTRA_CACHE: This flag is usually set with extra_opt along with a cache size. The size of this buffer is set by the user variable record_buffer_size. The value of this cache size is the amount of data read from disk in each fetch when performing a table scan. This means that before scanning a table it is normal to call extra with HA_EXTRA_CACHE and when the scan is completed to call HA_EXTRA_NO_CACHE to release the cache memory. Some special care is taken when using this extra parameter since there could be a write ongoing on the table in the same statement. In this one has to take special care since there might be a WRITE CACHE as well. HA_EXTRA_CACHE specifies using a READ CACHE and using READ CACHE and WRITE CACHE at the same time is not possible. Only MyISAM currently use this option. It is set when doing full table scans using rr_sequential and reset when completing such a scan with end_read_record (resetting means calling extra with HA_EXTRA_NO_CACHE). It is set in filesort.cc for MyISAM internal tables and it is set in a multi-update where HA_EXTRA_CACHE is called on a temporary result table and after that ha_rnd_init(0) on table to be updated and immediately after that HA_EXTRA_NO_CACHE on table to be updated. Apart from that it is always used from init_read_record but not when used from UPDATE statements. It is not used from DELETE statements with ORDER BY and LIMIT but it is used in normal scan loop in DELETE statements. The reason here is that DELETE's in MyISAM doesn't move existings data rows. It is also set in copy_data_between_tables when scanning the old table to copy over to the new table. And it is set in join_init_read_record where quick objects are used to perform a scan on the table. In this case the full table scan can even be performed multiple times as part of the nested loop join. For purposes of the partition handler it is obviously necessary to have special treatment of this extra call. If we would simply pass this extra call down to each handler we would allocate cache size * no of partitions amount of memory and this is not necessary since we will only scan one partition at a time when doing full table scans. Thus we treat it by first checking whether we have MyISAM handlers in the table, if not we simply ignore the call and if we have we will record the call but will not call any underlying handler yet. Then when performing the sequential scan we will check this recorded value and call extra_opt whenever we start scanning a new partition. HA_EXTRA_NO_CACHE: When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the flush method in the Query_result_union class. See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows(). It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers if they are MyISAM handlers. Other handlers we can ignore the call for. If no cache is in use they will quickly return after finding this out. And we also ensure that all caches are disabled and no one is left by mistake. In the future this call will probably be deleted and we will instead call ::reset(); HA_EXTRA_WRITE_CACHE: See above, called from various places. It is mostly used when we do INSERT ... SELECT No special handling to save cache space is developed currently. HA_EXTRA_PREPARE_FOR_UPDATE: This is called as part of a multi-table update. When the table to be updated is also scanned then this informs MyISAM handler to drop any caches if dynamic records are used (fixed size records do not care about this call). We pass this along to the first partition to scan, and flag that it is to be called after HA_EXTRA_CACHE when moving to the next partition to scan. HA_EXTRA_PREPARE_FOR_DROP: Only used by MyISAM, called in preparation for a DROP TABLE. It's used mostly by Windows that cannot handle dropping an open file. On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN. HA_EXTRA_READCHECK: HA_EXTRA_NO_READCHECK: Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that this is not needed in SQL. The reason for this call is that MyISAM sets the READ_CHECK_USED in the open call so the call is needed for MyISAM to reset this feature. The idea with this parameter was to inform of doing/not doing a read check before applying an update. Since SQL always performs a read before applying the update No Read Check is needed in MyISAM as well. This is a cut from Docs/myisam.txt Sometimes you might want to force an update without checking whether another user has changed the record since you last read it. This is somewhat dangerous, so it should ideally not be used. That can be accomplished by wrapping the mi_update() call in two calls to mi_extra(), using these functions: HA_EXTRA_NO_READCHECK=5 No readcheck on update HA_EXTRA_READCHECK=6 Use readcheck (def) 4) Operations only used by temporary tables for query processing ---------------------------------------------------------------- HA_EXTRA_RESET_STATE: Same as reset() except that buffers are not released. If there is a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading or to change type of cache between READ CACHE and WRITE CACHE. This extra function is always called immediately before calling delete_all_rows on the handler for temporary tables. There are cases however when HA_EXTRA_RESET_STATE isn't called in a similar case for a temporary table in sql_union.cc and in two other cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE called afterwards. The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means disable caching, delete all rows and enable WRITE CACHE. This is used for temporary tables containing distinct sums and a functional group. The only case that delete_all_rows is called on non-temporary tables is in sql_delete.cc when DELETE FROM table; is called by a user. In this case no special extra calls are performed before or after this call. The partition handler should not need to bother about this one. It should never be called. HA_EXTRA_NO_ROWS: Don't insert rows indication to HEAP and MyISAM, only used by temporary tables used in query processing. Not handled by partition handler. 5) Operations only used by MyISAM internally -------------------------------------------- HA_EXTRA_REINIT_CACHE: This call reinitializes the READ CACHE described above if there is one and otherwise the call is ignored. We can thus safely call it on all underlying handlers if they are MyISAM handlers. It is however never called so we don't handle it at all. HA_EXTRA_FLUSH_CACHE: Flush WRITE CACHE in MyISAM. It is only from one place in the code. This is in sql_insert.cc where it is called if the table_flags doesn't contain HA_DUPLICATE_POS. The only handler having the HA_DUPLICATE_POS set is the MyISAM handler and so the only handler not receiving this call is MyISAM. Thus in effect this call is called but never used. Could be removed from sql_insert.cc HA_EXTRA_NO_USER_CHANGE: Only used by MyISAM, never called. Simulates lock_type as locked. HA_EXTRA_WAIT_LOCK: HA_EXTRA_WAIT_NOLOCK: Only used by MyISAM, called from MyISAM handler but never from server code on top of the handler. Sets lock_wait on/off HA_EXTRA_NO_KEYS: Only used MyISAM, only used internally in MyISAM handler, never called from server level. HA_EXTRA_KEYREAD_CHANGE_POS: HA_EXTRA_REMEMBER_POS: HA_EXTRA_RESTORE_POS: HA_EXTRA_PRELOAD_BUFFER_SIZE: HA_EXTRA_CHANGE_KEY_TO_DUP: HA_EXTRA_CHANGE_KEY_TO_UNIQUE: Only used by MyISAM, never called. 6) Operations not used at all ----------------------------- HA_EXTRA_KEY_CACHE: HA_EXTRA_NO_KEY_CACHE: This parameters are no longer used and could be removed. 7) Operations only used by federated tables for query processing ---------------------------------------------------------------- HA_EXTRA_INSERT_WITH_UPDATE: Inform handler that an "INSERT...ON DUPLICATE KEY UPDATE" will be executed. This condition is unset by HA_EXTRA_NO_IGNORE_DUP_KEY. 8) Operations only used by NDB ------------------------------ HA_EXTRA_DELETE_CANNOT_BATCH: HA_EXTRA_UPDATE_CANNOT_BATCH: Inform handler that delete_row()/update_row() cannot batch deletes/updates and should perform them immediately. This may be needed when table has AFTER DELETE/UPDATE triggers which access to subject table. These flags are reset by the handler::extra(HA_EXTRA_RESET) call. 9) Operations only used by MERGE ------------------------------ HA_EXTRA_ADD_CHILDREN_LIST: HA_EXTRA_ATTACH_CHILDREN: HA_EXTRA_IS_ATTACHED_CHILDREN: HA_EXTRA_DETACH_CHILDREN: Special actions for MERGE tables. Ignore. 10) Operations only used by InnoDB ---------------------------------- HA_EXTRA_EXPORT: Prepare table for export (e.g. quiesce the table and write table metadata). 11) Operations only used by partitioning ------------------------------ HA_EXTRA_SECONDARY_SORT_ROWID: INDEX_MERGE type of execution, needs to do secondary sort by ROWID (handler::ref). */ int ha_partition::extra(enum ha_extra_function operation) { DBUG_ENTER("ha_partition:extra"); DBUG_PRINT("info", ("operation: %d", (int) operation)); switch (operation) { /* Category 1), used by most handlers */ case HA_EXTRA_KEYREAD: case HA_EXTRA_NO_KEYREAD: case HA_EXTRA_FLUSH: case HA_EXTRA_PREPARE_FOR_RENAME: case HA_EXTRA_FORCE_REOPEN: DBUG_RETURN(loop_extra(operation)); break; /* Category 2), used by non-MyISAM handlers */ case HA_EXTRA_IGNORE_DUP_KEY: case HA_EXTRA_NO_IGNORE_DUP_KEY: case HA_EXTRA_KEYREAD_PRESERVE_FIELDS: { if (!m_myisam) DBUG_RETURN(loop_extra(operation)); break; } /* Category 3), used by MyISAM handlers */ case HA_EXTRA_PREPARE_FOR_UPDATE: /* Needs to be run on the first partition in the range now, and later in late_extra_cache, when switching to a new partition to scan. */ m_extra_prepare_for_update= TRUE; if (m_part_spec.start_part != NO_CURRENT_PART_ID) { if (!m_extra_cache) m_extra_cache_part_id= m_part_spec.start_part; assert(m_extra_cache_part_id == m_part_spec.start_part); (void) m_file[m_part_spec.start_part]->extra(HA_EXTRA_PREPARE_FOR_UPDATE); } break; case HA_EXTRA_NORMAL: case HA_EXTRA_QUICK: case HA_EXTRA_PREPARE_FOR_DROP: case HA_EXTRA_FLUSH_CACHE: { if (m_myisam) DBUG_RETURN(loop_extra(operation)); break; } case HA_EXTRA_NO_READCHECK: { /* This is only done as a part of ha_open, which is also used in ha_partition::open, so no need to do anything. */ break; } case HA_EXTRA_CACHE: { prepare_extra_cache(0); break; } case HA_EXTRA_NO_CACHE: { int ret= 0; if (m_extra_cache_part_id != NO_CURRENT_PART_ID) ret= m_file[m_extra_cache_part_id]->extra(HA_EXTRA_NO_CACHE); m_extra_cache= FALSE; m_extra_cache_size= 0; m_extra_prepare_for_update= FALSE; m_extra_cache_part_id= NO_CURRENT_PART_ID; DBUG_RETURN(ret); } case HA_EXTRA_WRITE_CACHE: { m_extra_cache= FALSE; m_extra_cache_size= 0; m_extra_prepare_for_update= FALSE; m_extra_cache_part_id= NO_CURRENT_PART_ID; DBUG_RETURN(loop_extra(operation)); } case HA_EXTRA_IGNORE_NO_KEY: case HA_EXTRA_NO_IGNORE_NO_KEY: { /* Ignore as these are specific to NDB for handling idempotency */ break; } case HA_EXTRA_WRITE_CAN_REPLACE: case HA_EXTRA_WRITE_CANNOT_REPLACE: { /* Informs handler that write_row() can replace rows which conflict with row being inserted by PK/unique key without reporting error to the SQL-layer. This optimization is not safe for partitioned table in general case since we may have to put new version of row into partition which is different from partition in which old version resides (for example when we partition by non-PK column or by some column which is not part of unique key which were violated). And since NDB which is the only engine at the moment that supports this optimization handles partitioning on its own we simple disable it here. (BTW for NDB this optimization is safe since it supports only KEY partitioning and won't use this optimization for tables which have additional unique constraints). */ break; } /* Category 7), used by federated handlers */ case HA_EXTRA_INSERT_WITH_UPDATE: DBUG_RETURN(loop_extra(operation)); /* Category 8) Operations only used by NDB */ case HA_EXTRA_DELETE_CANNOT_BATCH: case HA_EXTRA_UPDATE_CANNOT_BATCH: { /* Currently only NDB use the *_CANNOT_BATCH */ break; } /* Category 9) Operations only used by MERGE */ case HA_EXTRA_ADD_CHILDREN_LIST: case HA_EXTRA_ATTACH_CHILDREN: case HA_EXTRA_IS_ATTACHED_CHILDREN: case HA_EXTRA_DETACH_CHILDREN: { /* Special actions for MERGE tables. Ignore. */ break; } /* http://dev.mysql.com/doc/refman/5.1/en/partitioning-limitations.html says we no longer support logging to partitioned tables, so we fail here. */ case HA_EXTRA_MARK_AS_LOG_TABLE: DBUG_RETURN(ER_UNSUPORTED_LOG_ENGINE); /* Category 10), used by InnoDB handlers */ case HA_EXTRA_EXPORT: DBUG_RETURN(loop_extra(operation)); /* Category 11) Operations only used by partitioning. */ case HA_EXTRA_SECONDARY_SORT_ROWID: { // TODO: Remove this and add a flag to index_init instead, // so we can avoid allocating ref_length bytes for every used partition // in init_record_priority_queue()! /* index_init(sorted=true) must have been called! */ assert(m_ordered); assert(m_ordered_rec_buffer); /* No index_read call must have been done! */ assert(m_queue->empty()); /* If not PK is set as secondary sort, do secondary sort by rowid/ref. */ if (!m_curr_key_info[1]) { m_ref_usage= Partition_helper::REF_USED_FOR_SORT; m_queue->m_fun= key_and_ref_cmp; } break; } case HA_EXTRA_RESET_STATE: { break; } default: { /* Temporary crash to discover what is wrong */ assert(0); break; } } DBUG_RETURN(0); } /** Special extra call to reset extra parameters @return Operation status. @retval >0 Error code @retval 0 Success @note Called at end of each statement to reset buffers. To avoid excessive calls, the m_partitions_to_reset bitmap keep records of which partitions that have been used in extra(), external_lock() or start_stmt() and is needed to be called. */ int ha_partition::reset(void) { int result= 0; int tmp; uint i; DBUG_ENTER("ha_partition::reset"); for (i= bitmap_get_first_set(&m_partitions_to_reset); i < m_tot_parts; i= bitmap_get_next_set(&m_partitions_to_reset, i)) { if ((tmp= m_file[i]->ha_reset())) result= tmp; } bitmap_clear_all(&m_partitions_to_reset); DBUG_RETURN(result); } /* Special extra method for HA_EXTRA_CACHE with cachesize as extra parameter SYNOPSIS extra_opt() operation Must be HA_EXTRA_CACHE cachesize Size of cache in full table scan RETURN VALUE >0 Error code 0 Success */ int ha_partition::extra_opt(enum ha_extra_function operation, ulong cachesize) { DBUG_ENTER("ha_partition::extra_opt()"); assert(HA_EXTRA_CACHE == operation); prepare_extra_cache(cachesize); DBUG_RETURN(0); } /* Call extra on handler with HA_EXTRA_CACHE and cachesize SYNOPSIS prepare_extra_cache() cachesize Size of cache for full table scan RETURN VALUE NONE */ void ha_partition::prepare_extra_cache(uint cachesize) { DBUG_ENTER("ha_partition::prepare_extra_cache()"); DBUG_PRINT("info", ("cachesize %u", cachesize)); m_extra_cache= TRUE; m_extra_cache_size= cachesize; if (m_part_spec.start_part != NO_CURRENT_PART_ID) { assert(bitmap_is_set(&m_partitions_to_reset, m_part_spec.start_part)); bitmap_set_bit(&m_partitions_to_reset, m_part_spec.start_part); late_extra_cache(m_part_spec.start_part); } DBUG_VOID_RETURN; } /* Call extra on all partitions SYNOPSIS loop_extra() operation extra operation type RETURN VALUE >0 Error code 0 Success */ int ha_partition::loop_extra(enum ha_extra_function operation) { int result= 0, tmp; uint i; DBUG_ENTER("ha_partition::loop_extra()"); for (i= bitmap_get_first_set(&m_part_info->lock_partitions); i < m_tot_parts; i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) { if ((tmp= m_file[i]->extra(operation))) result= tmp; } /* Add all used partitions to be called in reset(). */ bitmap_union(&m_partitions_to_reset, &m_part_info->lock_partitions); DBUG_RETURN(result); } /* Call extra(HA_EXTRA_CACHE) on next partition_id SYNOPSIS late_extra_cache() partition_id Partition id to call extra on RETURN VALUE NONE */ void ha_partition::late_extra_cache(uint partition_id) { handler *file; DBUG_ENTER("ha_partition::late_extra_cache"); DBUG_PRINT("info", ("extra_cache %u prepare %u partid %u size %u", m_extra_cache, m_extra_prepare_for_update, partition_id, m_extra_cache_size)); if (!m_extra_cache && !m_extra_prepare_for_update) DBUG_VOID_RETURN; file= m_file[partition_id]; if (m_extra_cache) { if (m_extra_cache_size == 0) (void) file->extra(HA_EXTRA_CACHE); else (void) file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size); } if (m_extra_prepare_for_update) { (void) file->extra(HA_EXTRA_PREPARE_FOR_UPDATE); } m_extra_cache_part_id= partition_id; DBUG_VOID_RETURN; } /* Call extra(HA_EXTRA_NO_CACHE) on next partition_id SYNOPSIS late_extra_no_cache() partition_id Partition id to call extra on RETURN VALUE NONE */ void ha_partition::late_extra_no_cache(uint partition_id) { handler *file; DBUG_ENTER("ha_partition::late_extra_no_cache"); if (!m_extra_cache && !m_extra_prepare_for_update) DBUG_VOID_RETURN; file= m_file[partition_id]; (void) file->extra(HA_EXTRA_NO_CACHE); assert(partition_id == m_extra_cache_part_id); m_extra_cache_part_id= NO_CURRENT_PART_ID; DBUG_VOID_RETURN; } /**************************************************************************** MODULE optimiser support ****************************************************************************/ /** Get keys to use for scanning. @return key_map of keys usable for scanning @note No need to use read_partitions here, since it does not depend on which partitions is used, only which storage engine used. */ const key_map *ha_partition::keys_to_use_for_scanning() { DBUG_ENTER("ha_partition::keys_to_use_for_scanning"); DBUG_RETURN(m_file[0]->keys_to_use_for_scanning()); } /** Minimum number of rows to base optimizer estimate on. */ ha_rows ha_partition::min_rows_for_estimate() { uint i, max_used_partitions, tot_used_partitions; DBUG_ENTER("ha_partition::min_rows_for_estimate"); tot_used_partitions= m_part_info->num_partitions_used(); /* All partitions might have been left as unused during partition pruning due to, for example, an impossible WHERE condition. Nonetheless, the optimizer might still attempt to perform (e.g. range) analysis where an estimate of the the number of rows is calculated using records_in_range. Hence, to handle this and other possible cases, use zero as the minimum number of rows to base the estimate on if no partition is being used. */ if (!tot_used_partitions) DBUG_RETURN(0); /* Allow O(log2(tot_partitions)) increase in number of used partitions. This gives O(tot_rows/log2(tot_partitions)) rows to base the estimate on. I.e when the total number of partitions doubles, allow one more partition to be checked. */ i= 2; max_used_partitions= 1; while (i < m_tot_parts) { max_used_partitions++; i= i << 1; } if (max_used_partitions > tot_used_partitions) max_used_partitions= tot_used_partitions; /* stats.records is already updated by the info(HA_STATUS_VARIABLE) call. */ DBUG_PRINT("info", ("max_used_partitions: %u tot_rows: %lu", max_used_partitions, (ulong) stats.records)); DBUG_PRINT("info", ("tot_used_partitions: %u min_rows_to_check: %lu", tot_used_partitions, (ulong) stats.records * max_used_partitions / tot_used_partitions)); DBUG_RETURN(stats.records * max_used_partitions / tot_used_partitions); } /** Get the biggest used partition. Starting at the N:th biggest partition and skips all non used partitions, returning the biggest used partition found @param[in,out] part_index Skip the *part_index biggest partitions @return The biggest used partition with index not lower than *part_index. @retval NO_CURRENT_PART_ID No more partition used. @retval != NO_CURRENT_PART_ID partition id of biggest used partition with index >= *part_index supplied. Note that *part_index will be updated to the next partition index to use. */ uint ha_partition::get_biggest_used_partition(uint *part_index) { uint part_id; while ((*part_index) < m_tot_parts) { part_id= m_part_ids_sorted_by_num_of_records[(*part_index)++]; if (m_part_info->is_partition_used(part_id)) return part_id; } return NO_CURRENT_PART_ID; } /* Return time for a scan of the table SYNOPSIS scan_time() RETURN VALUE time for scan */ double ha_partition::scan_time() { double scan_time= 0; uint i; DBUG_ENTER("ha_partition::scan_time"); for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) scan_time+= m_file[i]->scan_time(); DBUG_RETURN(scan_time); } /** Find number of records in a range. @param inx Index number @param min_key Start of range @param max_key End of range @return Number of rows in range. Given a starting key, and an ending key estimate the number of rows that will exist between the two. max_key may be empty which in case determine if start_key matches any rows. */ ha_rows ha_partition::records_in_range(uint inx, key_range *min_key, key_range *max_key) { ha_rows min_rows_to_check, rows, estimated_rows=0, checked_rows= 0; uint partition_index= 0, part_id; DBUG_ENTER("ha_partition::records_in_range"); min_rows_to_check= min_rows_for_estimate(); while ((part_id= get_biggest_used_partition(&partition_index)) != NO_CURRENT_PART_ID) { rows= m_file[part_id]->records_in_range(inx, min_key, max_key); DBUG_PRINT("info", ("part %u match %lu rows of %lu", part_id, (ulong) rows, (ulong) m_file[part_id]->stats.records)); if (rows == HA_POS_ERROR) DBUG_RETURN(HA_POS_ERROR); estimated_rows+= rows; checked_rows+= m_file[part_id]->stats.records; /* Returning 0 means no rows can be found, so we must continue this loop as long as we have estimated_rows == 0. Also many engines return 1 to indicate that there may exist a matching row, we do not normalize this by dividing by number of used partitions, but leave it to be returned as a sum, which will reflect that we will need to scan each partition's index. Note that this statistics may not always be correct, so we must continue even if the current partition has 0 rows, since we might have deleted rows from the current partition, or inserted to the next partition. */ if (estimated_rows && checked_rows && checked_rows >= min_rows_to_check) { DBUG_PRINT("info", ("records_in_range(inx %u): %lu (%lu * %lu / %lu)", inx, (ulong) (estimated_rows * stats.records / checked_rows), (ulong) estimated_rows, (ulong) stats.records, (ulong) checked_rows)); DBUG_RETURN(estimated_rows * stats.records / checked_rows); } } DBUG_PRINT("info", ("records_in_range(inx %u): %lu", inx, (ulong) estimated_rows)); DBUG_RETURN(estimated_rows); } /** Estimate upper bound of number of rows. @return Number of rows. */ ha_rows ha_partition::estimate_rows_upper_bound() { ha_rows rows, tot_rows= 0; handler **file= m_file; DBUG_ENTER("ha_partition::estimate_rows_upper_bound"); do { if (m_part_info->is_partition_used(file - m_file)) { rows= (*file)->estimate_rows_upper_bound(); if (rows == HA_POS_ERROR) DBUG_RETURN(HA_POS_ERROR); tot_rows+= rows; } } while (*(++file)); DBUG_RETURN(tot_rows); } /* Get time to read SYNOPSIS read_time() index Index number used ranges Number of ranges rows Number of rows RETURN VALUE time for read DESCRIPTION This will be optimised later to include whether or not the index can be used with partitioning. To achieve we need to add another parameter that specifies how many of the index fields that are bound in the ranges. Possibly added as a new call to handlers. */ double ha_partition::read_time(uint index, uint ranges, ha_rows rows) { DBUG_ENTER("ha_partition::read_time"); DBUG_RETURN(m_file[0]->read_time(index, ranges, rows)); } /** Number of rows in table. see handler.h @param[out] num_rows Number of records in the table (after pruning!) @return possible error code. */ int ha_partition::records(ha_rows *num_rows) { ha_rows tot_rows= 0; uint i; DBUG_ENTER("ha_partition::records"); for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { int error= m_file[i]->ha_records(num_rows); if (error != 0) DBUG_RETURN(error); tot_rows+= *num_rows; } *num_rows= tot_rows; DBUG_RETURN(0); } /* Is it ok to switch to a new engine for this table SYNOPSIS can_switch_engine() RETURN VALUE TRUE Ok FALSE Not ok DESCRIPTION Used to ensure that tables with foreign key constraints are not moved to engines without foreign key support. */ bool ha_partition::can_switch_engines() { handler **file; DBUG_ENTER("ha_partition::can_switch_engines"); file= m_file; do { if (!(*file)->can_switch_engines()) { assert(0); // A ha_partition table should never have FKs!!! DBUG_RETURN(FALSE); } } while (*(++file)); DBUG_RETURN(TRUE); } /* Is table cache supported SYNOPSIS table_cache_type() */ uint8 ha_partition::table_cache_type() { DBUG_ENTER("ha_partition::table_cache_type"); DBUG_RETURN(m_file[0]->table_cache_type()); } /**************************************************************************** MODULE print messages ****************************************************************************/ const char *ha_partition::index_type(uint inx) { uint first_used_partition; DBUG_ENTER("ha_partition::index_type"); first_used_partition= m_part_info->get_first_used_partition(); if (first_used_partition == MY_BIT_NONE) { assert(0); // How can this happen? DBUG_RETURN(handler::index_type(inx)); } DBUG_RETURN(m_file[first_used_partition]->index_type(inx)); } enum row_type ha_partition::get_row_type() const { uint i; enum row_type type; DBUG_ENTER("ha_partition::get_row_type"); i= m_part_info->get_first_used_partition(); assert(i < m_tot_parts); if (i >= m_tot_parts) DBUG_RETURN(ROW_TYPE_NOT_USED); type= m_file[i]->get_row_type(); DBUG_PRINT("info", ("partition %u, row_type: %d", i, type)); for (i= bitmap_get_next_set(&m_part_info->lock_partitions, i); i < m_tot_parts; i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) { enum row_type part_type= m_file[i]->get_row_type(); DBUG_PRINT("info", ("partition %u, row_type: %d", i, type)); if (part_type != type) DBUG_RETURN(ROW_TYPE_NOT_USED); } DBUG_RETURN(type); } void ha_partition::print_error(int error, myf errflag) { DBUG_ENTER("ha_partition::print_error"); if (print_partition_error(error, errflag)) { /* Not a partitioning error. */ /* In case m_file has not been initialized, like in bug#42438 */ if (m_file) { if (m_last_part >= m_tot_parts) { m_last_part= 0; } m_file[m_last_part]->print_error(error, errflag); } else handler::print_error(error, errflag); } DBUG_VOID_RETURN; } bool ha_partition::get_error_message(int error, String *buf) { DBUG_ENTER("ha_partition::get_error_message"); /* Should probably look for my own errors first */ /* In case m_file has not been initialized, like in bug#42438 */ if (m_file) DBUG_RETURN(m_file[m_last_part]->get_error_message(error, buf)); DBUG_RETURN(handler::get_error_message(error, buf)); } /**************************************************************************** MODULE in-place ALTER ****************************************************************************/ /** Get table flags. */ handler::Table_flags ha_partition::table_flags() const { uint first_used_partition= 0; DBUG_ENTER("ha_partition::table_flags"); if (m_handler_status < handler_initialized || m_handler_status >= handler_closed) DBUG_RETURN(PARTITION_ENABLED_TABLE_FLAGS); if (get_lock_type() != F_UNLCK) { /* The flags are cached after external_lock, and may depend on isolation level. So we should use a locked partition to get the correct flags. */ first_used_partition= bitmap_get_first_set(&m_part_info->lock_partitions); if (first_used_partition == MY_BIT_NONE) first_used_partition= 0; } DBUG_RETURN((m_file[first_used_partition]->ha_table_flags() & ~(PARTITION_DISABLED_TABLE_FLAGS)) | (PARTITION_ENABLED_TABLE_FLAGS)); } /** check if copy of data is needed in alter table. */ bool ha_partition::check_if_incompatible_data(HA_CREATE_INFO *create_info, uint table_changes) { handler **file; bool ret= COMPATIBLE_DATA_YES; /* The check for any partitioning related changes have already been done in mysql_alter_table (by fix_partition_func), so it is only up to the underlying handlers. */ for (file= m_file; *file; file++) if ((ret= (*file)->check_if_incompatible_data(create_info, table_changes)) != COMPATIBLE_DATA_YES) break; return ret; } /** Support of in-place alter table. */ /** Helper class for in-place alter, see handler.h */ class ha_partition_inplace_ctx : public inplace_alter_handler_ctx { public: inplace_alter_handler_ctx **handler_ctx_array; private: uint m_tot_parts; public: ha_partition_inplace_ctx(THD *thd, uint tot_parts) : inplace_alter_handler_ctx(), handler_ctx_array(NULL), m_tot_parts(tot_parts) {} ~ha_partition_inplace_ctx() { if (handler_ctx_array) { for (uint index= 0; index < m_tot_parts; index++) delete handler_ctx_array[index]; } } }; enum_alter_inplace_result ha_partition::check_if_supported_inplace_alter(TABLE *altered_table, Alter_inplace_info *ha_alter_info) { uint index= 0; enum_alter_inplace_result result= HA_ALTER_INPLACE_NO_LOCK; ha_partition_inplace_ctx *part_inplace_ctx; bool first_is_set= false; THD *thd= ha_thd(); DBUG_ENTER("ha_partition::check_if_supported_inplace_alter"); /* Support inplace change of KEY () -> KEY ALGORITHM = N () and UPGRADE PARTITIONING. Any other change would set partition_changed in prep_alter_part_table() in mysql_alter_table(). */ if (ha_alter_info->alter_info->flags == Alter_info::ALTER_PARTITION || ha_alter_info->alter_info->flags == Alter_info::ALTER_UPGRADE_PARTITIONING) DBUG_RETURN(HA_ALTER_INPLACE_NO_LOCK); /* We cannot allow INPLACE to change order of KEY partitioning fields! */ if (ha_alter_info->handler_flags & Alter_inplace_info::ALTER_STORED_COLUMN_ORDER) { if (!m_part_info->same_key_column_order( &ha_alter_info->alter_info->create_list)) { DBUG_RETURN(HA_ALTER_INPLACE_NOT_SUPPORTED); } } part_inplace_ctx= new (thd->mem_root) ha_partition_inplace_ctx(thd, m_tot_parts); if (!part_inplace_ctx) DBUG_RETURN(HA_ALTER_ERROR); part_inplace_ctx->handler_ctx_array= (inplace_alter_handler_ctx **) thd->alloc(sizeof(inplace_alter_handler_ctx *) * (m_tot_parts + 1)); if (!part_inplace_ctx->handler_ctx_array) DBUG_RETURN(HA_ALTER_ERROR); /* Set all to NULL, including the terminating one. */ for (index= 0; index <= m_tot_parts; index++) part_inplace_ctx->handler_ctx_array[index]= NULL; for (index= 0; index < m_tot_parts; index++) { enum_alter_inplace_result p_result= m_file[index]->check_if_supported_inplace_alter(altered_table, ha_alter_info); part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx; if (index == 0) { first_is_set= (ha_alter_info->handler_ctx != NULL); } else if (first_is_set != (ha_alter_info->handler_ctx != NULL)) { /* Either none or all partitions must set handler_ctx! */ assert(0); DBUG_RETURN(HA_ALTER_ERROR); } if (p_result < result) result= p_result; if (result == HA_ALTER_ERROR) break; } ha_alter_info->handler_ctx= part_inplace_ctx; /* To indicate for future inplace calls that there are several partitions/handlers that need to be committed together, we set group_commit_ctx to the NULL terminated array of the partitions handlers. */ ha_alter_info->group_commit_ctx= part_inplace_ctx->handler_ctx_array; DBUG_RETURN(result); } bool ha_partition::prepare_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info) { uint index= 0; bool error= false; ha_partition_inplace_ctx *part_inplace_ctx; DBUG_ENTER("ha_partition::prepare_inplace_alter_table"); /* Changing to similar partitioning, only update metadata. Non allowed changes would be catched in prep_alter_part_table(). */ if (ha_alter_info->alter_info->flags == Alter_info::ALTER_PARTITION || ha_alter_info->alter_info->flags == Alter_info::ALTER_UPGRADE_PARTITIONING) DBUG_RETURN(false); part_inplace_ctx= static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx); for (index= 0; index < m_tot_parts && !error; index++) { ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[index]; if (m_file[index]->ha_prepare_inplace_alter_table(altered_table, ha_alter_info)) error= true; part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx; } ha_alter_info->handler_ctx= part_inplace_ctx; DBUG_RETURN(error); } bool ha_partition::inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info) { uint index= 0; bool error= false; ha_partition_inplace_ctx *part_inplace_ctx; DBUG_ENTER("ha_partition::inplace_alter_table"); /* Changing to similar partitioning, only update metadata. Non allowed changes would be catched in prep_alter_part_table(). */ if (ha_alter_info->alter_info->flags == Alter_info::ALTER_PARTITION || ha_alter_info->alter_info->flags == Alter_info::ALTER_UPGRADE_PARTITIONING) DBUG_RETURN(false); part_inplace_ctx= static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx); for (index= 0; index < m_tot_parts && !error; index++) { ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[index]; if (m_file[index]->ha_inplace_alter_table(altered_table, ha_alter_info)) error= true; part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx; } ha_alter_info->handler_ctx= part_inplace_ctx; DBUG_RETURN(error); } /* Note that this function will try rollback failed ADD INDEX by executing DROP INDEX for the indexes that were committed (if any) before the error occured. This means that the underlying storage engine must be able to drop index in-place with X-lock held. (As X-lock will be held here if new indexes are to be committed) */ bool ha_partition::commit_inplace_alter_table(TABLE *altered_table, Alter_inplace_info *ha_alter_info, bool commit) { ha_partition_inplace_ctx *part_inplace_ctx; bool error= false; DBUG_ENTER("ha_partition::commit_inplace_alter_table"); /* Changing to similar partitioning, only update metadata. Non allowed changes would be catched in prep_alter_part_table(). */ if (ha_alter_info->alter_info->flags == Alter_info::ALTER_PARTITION || ha_alter_info->alter_info->flags == Alter_info::ALTER_UPGRADE_PARTITIONING) DBUG_RETURN(false); part_inplace_ctx= static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx); if (commit) { assert(ha_alter_info->group_commit_ctx == part_inplace_ctx->handler_ctx_array); ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[0]; error= m_file[0]->ha_commit_inplace_alter_table(altered_table, ha_alter_info, commit); if (error) goto end; if (ha_alter_info->group_commit_ctx) { /* If ha_alter_info->group_commit_ctx is not set to NULL, then the engine did only commit the first partition! The engine is probably new, since both innodb and the default implementation of handler::commit_inplace_alter_table sets it to NULL and simply return false, since it allows metadata changes only. Loop over all other partitions as to follow the protocol! */ uint i; assert(0); for (i= 1; i < m_tot_parts; i++) { ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i]; error|= m_file[i]->ha_commit_inplace_alter_table(altered_table, ha_alter_info, true); } } } else { uint i; for (i= 0; i < m_tot_parts; i++) { /* Rollback, commit == false, is done for each partition! */ ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i]; if (m_file[i]->ha_commit_inplace_alter_table(altered_table, ha_alter_info, false)) error= true; } } end: ha_alter_info->handler_ctx= part_inplace_ctx; DBUG_RETURN(error); } void ha_partition::notify_table_changed() { handler **file; DBUG_ENTER("ha_partition::notify_table_changed"); for (file= m_file; *file; file++) (*file)->ha_notify_table_changed(); DBUG_VOID_RETURN; } int ha_partition::discard_or_import_tablespace(my_bool discard) { int error= 0; uint i; DBUG_ENTER("ha_partition::discard_or_import_tablespace"); for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { error= m_file[i]->ha_discard_or_import_tablespace(discard); if (error) break; } DBUG_RETURN(error); } /* If frm_error() is called then we will use this to to find out what file extensions exist for the storage engine. This is also used by the default rename_table and delete_table method in handler.cc. */ static const char *ha_partition_ext[]= { ha_par_ext, NullS }; const char **ha_partition::bas_ext() const { return ha_partition_ext; } uint ha_partition::min_of_the_max_uint( uint (handler::*operator_func)(void) const) const { handler **file; uint min_of_the_max= ((*m_file)->*operator_func)(); for (file= m_file+1; *file; file++) { uint tmp= ((*file)->*operator_func)(); set_if_smaller(min_of_the_max, tmp); } return min_of_the_max; } uint ha_partition::min_of_the_max_uint(HA_CREATE_INFO *create_info, uint (handler::*operator_func)(HA_CREATE_INFO *) const) const { handler **file; uint min_of_the_max= ((*m_file)->*operator_func)(create_info); for (file= m_file+1; *file; file++) { uint tmp= ((*file)->*operator_func)(create_info); set_if_smaller(min_of_the_max, tmp); } return min_of_the_max; } uint ha_partition::max_supported_key_parts() const { return min_of_the_max_uint(&handler::max_supported_key_parts); } uint ha_partition::max_supported_key_length() const { return min_of_the_max_uint(&handler::max_supported_key_length); } uint ha_partition::max_supported_key_part_length(HA_CREATE_INFO *create_info) const { return min_of_the_max_uint(create_info, &handler::max_supported_key_part_length); } uint ha_partition::max_supported_record_length() const { return min_of_the_max_uint(&handler::max_supported_record_length); } uint ha_partition::max_supported_keys() const { return min_of_the_max_uint(&handler::max_supported_keys); } uint ha_partition::extra_rec_buf_length() const { handler **file; uint max= (*m_file)->extra_rec_buf_length(); for (file= m_file, file++; *file; file++) if (max < (*file)->extra_rec_buf_length()) max= (*file)->extra_rec_buf_length(); return max; } uint ha_partition::min_record_length(uint options) const { handler **file; uint max= (*m_file)->min_record_length(options); for (file= m_file, file++; *file; file++) if (max < (*file)->min_record_length(options)) max= (*file)->min_record_length(options); return max; } /**************************************************************************** MODULE compare records ****************************************************************************/ /* Compare two positions SYNOPSIS cmp_ref() ref1 First position ref2 Second position RETURN VALUE <0 ref1 < ref2 0 Equal >0 ref1 > ref2 DESCRIPTION We get two references and need to check if those records are the same. If they belong to different partitions we decide that they are not the same record. Otherwise we use the particular handler to decide if they are the same. Sort in partition id order if not equal. */ int ha_partition::cmp_ref(const uchar *ref1, const uchar *ref2) { int cmp; my_ptrdiff_t diff1, diff2; DBUG_ENTER("ha_partition::cmp_ref"); cmp = m_file[0]->cmp_ref((ref1 + PARTITION_BYTES_IN_POS), (ref2 + PARTITION_BYTES_IN_POS)); if (cmp) DBUG_RETURN(cmp); if ((ref1[0] == ref2[0]) && (ref1[1] == ref2[1])) { /* This means that the references are same and are in same partition.*/ DBUG_RETURN(0); } /* In Innodb we compare with either primary key value or global DB_ROW_ID so it is not possible that the two references are equal and are in different partitions, but in myisam it is possible since we are comparing offsets. Remove this assert if DB_ROW_ID is changed to be per partition. */ assert(!m_innodb); diff1= ref2[1] - ref1[1]; diff2= ref2[0] - ref1[0]; if (diff1 > 0) { DBUG_RETURN(-1); } if (diff1 < 0) { DBUG_RETURN(+1); } if (diff2 > 0) { DBUG_RETURN(-1); } DBUG_RETURN(+1); } /**************************************************************************** MODULE condition pushdown ****************************************************************************/ /** Index condition pushdown registation @param keyno Key number for the condition @param idx_cond Item tree of the condition to test @return Remainder of non handled condition @note Only handles full condition or nothing at all. MyISAM and InnoDB both only supports full or nothing. */ Item *ha_partition::idx_cond_push(uint keyno, Item* idx_cond) { uint i; Item *res; DBUG_ENTER("ha_partition::idx_cond_push"); DBUG_EXECUTE("where", print_where(idx_cond, "cond", QT_ORDINARY);); DBUG_PRINT("info", ("keyno: %u, active_index: %u", keyno, active_index)); assert(pushed_idx_cond == NULL); for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { res= m_file[i]->idx_cond_push(keyno, idx_cond); if (res) { uint j; /* All partitions has the same structure, so if the first partition succeeds, then the rest will also succeed. */ assert(i == m_part_info->get_first_used_partition()); /* Only supports entire index conditions or no conditions! */ assert(res == idx_cond); if (res != idx_cond) m_file[i]->cancel_pushed_idx_cond(); /* cancel previous calls. */ for (j= m_part_info->get_first_used_partition(); j < i; // No need for cancel i, since no support j= m_part_info->get_next_used_partition(j)) { m_file[j]->cancel_pushed_idx_cond(); } DBUG_RETURN(idx_cond); } } assert(pushed_idx_cond_keyno == MAX_KEY); pushed_idx_cond= idx_cond; pushed_idx_cond_keyno= keyno; DBUG_PRINT("info", ("Index condition pushdown used for keyno: %u", keyno)); DBUG_RETURN(NULL); } /** Reset information about pushed index conditions */ void ha_partition::cancel_pushed_idx_cond() { uint i; DBUG_ENTER("ha_partition::cancel_pushed_idx_cond"); if (pushed_idx_cond) { for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) { m_file[i]->cancel_pushed_idx_cond(); } pushed_idx_cond= NULL; pushed_idx_cond_keyno= MAX_KEY; } DBUG_VOID_RETURN; } /**************************************************************************** MODULE auto increment ****************************************************************************/ /** Initialize the shared auto increment value. @param no_lock If HA_STATUS_NO_LOCK should be used in info(HA_STATUS_AUTO). Also sets stats.auto_increment_value. */ inline int ha_partition::initialize_auto_increment(bool no_lock) { DBUG_ENTER("ha_partition::initialize_auto_increment"); #ifndef NDEBUG if (table_share->tmp_table == NO_TMP_TABLE) { mysql_mutex_assert_owner(part_share->auto_inc_mutex); } #endif assert(!part_share->auto_inc_initialized); /* The auto-inc mutex in the table_share is locked, so we do not need to have the handlers locked. HA_STATUS_NO_LOCK is not checked, since we cannot skip locking the mutex, because it is initialized. */ handler *file, **file_array; ulonglong auto_increment_value= 0; uint no_lock_flag= no_lock ? HA_STATUS_NO_LOCK : 0; int ret_error, error= 0; file_array= m_file; DBUG_PRINT("info", ("checking all partitions for auto_increment_value")); do { file= *file_array; ret_error= file->info(HA_STATUS_AUTO | no_lock_flag); set_if_bigger(auto_increment_value, file->stats.auto_increment_value); if (ret_error && !error) { error= ret_error; } } while (*(++file_array)); assert(auto_increment_value); stats.auto_increment_value= auto_increment_value; /* We only use the cached auto inc value if it is the first part of the key. */ if (table_share->next_number_keypart == 0) { assert(part_share->next_auto_inc_val <= auto_increment_value); part_share->next_auto_inc_val= auto_increment_value; part_share->auto_inc_initialized= true; DBUG_PRINT("info", ("initializing next_auto_inc_val to %lu", (ulong) part_share->next_auto_inc_val)); } DBUG_RETURN(error); } /** This method is called by update_auto_increment which in turn is called by the individual handlers as part of write_row. We use the part_share->next_auto_inc_val, or search all partitions for the highest auto_increment_value if not initialized or if auto_increment field is a secondary part of a key, we must search every partition when holding a mutex to be sure of correctness. */ void ha_partition::get_auto_increment(ulonglong offset, ulonglong increment, ulonglong nb_desired_values, ulonglong *first_value, ulonglong *nb_reserved_values) { DBUG_ENTER("ha_partition::get_auto_increment"); DBUG_PRINT("info", ("offset: %lu inc: %lu desired_values: %lu " "first_value: %lu", (ulong) offset, (ulong) increment, (ulong) nb_desired_values, (ulong) *first_value)); assert(increment && nb_desired_values); *first_value= 0; if (table->s->next_number_keypart) { /* next_number_keypart is != 0 if the auto_increment column is a secondary column in the index (it is allowed in MyISAM) */ DBUG_PRINT("info", ("next_number_keypart != 0")); ulonglong nb_reserved_values_part; ulonglong first_value_part, max_first_value; handler **file= m_file; first_value_part= max_first_value= *first_value; /* Must lock and find highest value among all partitions. */ lock_auto_increment(); do { /* Only nb_desired_values = 1 makes sense */ (*file)->get_auto_increment(offset, increment, 1, &first_value_part, &nb_reserved_values_part); if (first_value_part == ULLONG_MAX) // error in one partition { *first_value= first_value_part; /* log that the error was between table/partition handler */ sql_print_error("Partition failed to reserve auto_increment value"); unlock_auto_increment(); DBUG_VOID_RETURN; } DBUG_PRINT("info", ("first_value_part: %lu", (ulong) first_value_part)); set_if_bigger(max_first_value, first_value_part); } while (*(++file)); *first_value= max_first_value; *nb_reserved_values= 1; unlock_auto_increment(); } else { Partition_helper::get_auto_increment_first_field(increment, nb_desired_values, first_value, nb_reserved_values); } DBUG_VOID_RETURN; } /** Get partition row type @param[in] Id of partition for which row type to be retrieved @return Partition row type */ enum row_type ha_partition::get_partition_row_type( uint part_id) { return m_file[part_id]->get_row_type(); } void ha_partition::release_auto_increment_all_parts() { uint i; DBUG_ENTER("ha_partition::release_auto_increment_all_parts"); assert(table->s->next_number_keypart); for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) { m_file[i]->ha_release_auto_increment(); } DBUG_VOID_RETURN; } /**************************************************************************** MODULE initialize handler for HANDLER call ****************************************************************************/ void ha_partition::init_table_handle_for_HANDLER() { uint i; for (i= m_part_info->get_first_used_partition(); i < m_tot_parts; i= m_part_info->get_next_used_partition(i)) m_file[i]->init_table_handle_for_HANDLER(); return; } /** Return the checksum of the partition. @param part_id Partition to checksum. @return Checksum or 0 if not supported. */ ha_checksum ha_partition::checksum_in_part(uint part_id) const { if ((table_flags() & HA_HAS_CHECKSUM)) { return m_file[part_id]->checksum(); } return 0; } /**************************************************************************** MODULE enable/disable indexes ****************************************************************************/ /* Disable indexes for a while SYNOPSIS disable_indexes() mode Mode RETURN VALUES 0 Success != 0 Error */ int ha_partition::disable_indexes(uint mode) { handler **file; int error= 0; assert(bitmap_is_set_all(&(m_part_info->lock_partitions))); for (file= m_file; *file; file++) { if ((error= (*file)->ha_disable_indexes(mode))) break; } return error; } /* Enable indexes again SYNOPSIS enable_indexes() mode Mode RETURN VALUES 0 Success != 0 Error */ int ha_partition::enable_indexes(uint mode) { handler **file; int error= 0; assert(bitmap_is_set_all(&(m_part_info->lock_partitions))); for (file= m_file; *file; file++) { if ((error= (*file)->ha_enable_indexes(mode))) break; } return error; } /* Check if indexes are disabled SYNOPSIS indexes_are_disabled() RETURN VALUES 0 Indexes are enabled != 0 Indexes are disabled */ int ha_partition::indexes_are_disabled(void) { handler **file; int error= 0; assert(bitmap_is_set_all(&(m_part_info->lock_partitions))); for (file= m_file; *file; file++) { if ((error= (*file)->indexes_are_disabled())) break; } return error; } #define KEY_PARTITIONING_CHANGED_STR \ "KEY () partitioning changed, please run:\n" \ "ALTER TABLE %s.%s ALGORITHM = INPLACE %s" int ha_partition::check_for_upgrade(HA_CHECK_OPT *check_opt) { int error= HA_ADMIN_NEEDS_CHECK; DBUG_ENTER("ha_partition::check_for_upgrade"); /* This is called even without FOR UPGRADE, if the .frm version is lower than the current version. In that case return that it needs checking! */ if (!(check_opt->sql_flags & TT_FOR_UPGRADE)) { if (m_file[0]->ht->partition_flags) DBUG_RETURN(HA_ADMIN_NEEDS_UPG_PART); DBUG_RETURN(error); } /* Partitions will be checked for during their ha_check! Check if KEY (sub)partitioning was used and any field's hash calculation differs from 5.1, see bug#14521864. */ if (table->s->mysql_version < 50503 && // 5.1 table (<5.5.3) ((m_part_info->part_type == HASH_PARTITION && // KEY partitioned m_part_info->list_of_part_fields) || (m_is_sub_partitioned && // KEY subpartitioned m_part_info->list_of_subpart_fields))) { Field **field; if (m_is_sub_partitioned) { field= m_part_info->subpart_field_array; } else { field= m_part_info->part_field_array; } for (; *field; field++) { switch ((*field)->real_type()) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: case MYSQL_TYPE_NEWDECIMAL: case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_LONGLONG: case MYSQL_TYPE_INT24: case MYSQL_TYPE_TIME: case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_YEAR: case MYSQL_TYPE_NEWDATE: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: { THD *thd= ha_thd(); char *part_buf; String db_name, table_name; uint part_buf_len; bool skip_generation= false; partition_info::enum_key_algorithm old_algorithm; old_algorithm= m_part_info->key_algorithm; error= HA_ADMIN_FAILED; append_identifier(ha_thd(), &db_name, table_share->db.str, table_share->db.length); append_identifier(ha_thd(), &table_name, table_share->table_name.str, table_share->table_name.length); if (m_part_info->key_algorithm != partition_info::KEY_ALGORITHM_NONE) { /* Only possible when someone tampered with .frm files, like during tests :) */ skip_generation= true; } m_part_info->key_algorithm= partition_info::KEY_ALGORITHM_51; if (skip_generation || !(part_buf= generate_partition_syntax(m_part_info, &part_buf_len, true, true, NULL, NULL, NULL)) || print_admin_msg(thd, SQL_ADMIN_MSG_TEXT_SIZE + 1, "error", table_share->db.str, table->alias, opt_op_name[CHECK_PARTS], KEY_PARTITIONING_CHANGED_STR, db_name.c_ptr_safe(), table_name.c_ptr_safe(), part_buf)) { /* Error creating admin message (too long string?). */ print_admin_msg(thd, MI_MAX_MSG_BUF, "error", table_share->db.str, table->alias, opt_op_name[CHECK_PARTS], KEY_PARTITIONING_CHANGED_STR, db_name.c_ptr_safe(), table_name.c_ptr_safe(), "<old partition clause>, but add ALGORITHM = 1" " between 'KEY' and '(' to change the metadata" " without the need of a full table rebuild."); } m_part_info->key_algorithm= old_algorithm; DBUG_RETURN(error); } default: /* Not affected! */ ; } } } if (m_file[0]->ht->partition_flags) { /* No longer needs ha_partition. */ error= HA_ADMIN_NEEDS_UPG_PART; } DBUG_RETURN(error); } struct st_mysql_storage_engine partition_storage_engine= { MYSQL_HANDLERTON_INTERFACE_VERSION }; mysql_declare_plugin(partition) { MYSQL_STORAGE_ENGINE_PLUGIN, &partition_storage_engine, "partition", "Mikael Ronstrom, MySQL AB", "Partition Storage Engine Helper", PLUGIN_LICENSE_GPL, partition_initialize, /* Plugin Init */ NULL, /* Plugin Deinit */ 0x0100, /* 1.0 */ NULL, /* status variables */ NULL, /* system variables */ NULL, /* config options */ 0, /* flags */ } mysql_declare_plugin_end;