Server IP : 172.67.216.182 / Your IP : 108.162.226.103 Web Server : Apache System : Linux krdc-ubuntu-s-2vcpu-4gb-amd-blr1-01.localdomain 5.15.0-142-generic #152-Ubuntu SMP Mon May 19 10:54:31 UTC 2025 x86_64 User : www ( 1000) PHP Version : 7.4.33 Disable Function : passthru,exec,system,putenv,chroot,chgrp,chown,shell_exec,popen,proc_open,pcntl_exec,ini_alter,ini_restore,dl,openlog,syslog,readlink,symlink,popepassthru,pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,imap_open,apache_setenv MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /www/wwwroot/lapma.in/wp-content/plugins/wp-file-manager/lib/codemirror/mode/mathematica/ |
Upload File : |
<!doctype html> <title>CodeMirror: Mathematica mode</title> <meta charset="utf-8"/> <link rel=stylesheet href="../../doc/docs.css"> <link rel=stylesheet href=../../lib/codemirror.css> <script src=../../lib/codemirror.js></script> <script src=../../addon/edit/matchbrackets.js></script> <script src=mathematica.js></script> <style type=text/css> .CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;} </style> <div id=nav> <a href="http://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a> <ul> <li><a href="../../index.html">Home</a> <li><a href="../../doc/manual.html">Manual</a> <li><a href="https://github.com/codemirror/codemirror">Code</a> </ul> <ul> <li><a href="../index.html">Language modes</a> <li><a class=active href="#">Mathematica</a> </ul> </div> <article> <h2>Mathematica mode</h2> <textarea id="mathematicaCode"> (* example Mathematica code *) (* Dualisiert wird anhand einer Polarität an einer Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also mit $det(Q) \neq 0$), z.B. die Identitätsmatrix. $p$ ist eine Liste von Polynomen - ein Ideal. *) dualize::"singular" = "Q must be regular: found Det[Q]==0."; dualize[ Q_, p_ ] := Block[ { m, n, xv, lv, uv, vars, polys, dual }, If[Det[Q] == 0, Message[dualize::"singular"], m = Length[p]; n = Length[Q] - 1; xv = Table[Subscript[x, i], {i, 0, n}]; lv = Table[Subscript[l, i], {i, 1, m}]; uv = Table[Subscript[u, i], {i, 0, n}]; (* Konstruiere Ideal polys. *) If[m == 0, polys = Q.uv, polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv] ]; (* Eliminiere die ersten n + 1 + m Variablen xv und lv aus dem Ideal polys. *) vars = Join[xv, lv]; dual = GroebnerBasis[polys, uv, vars]; (* Ersetze u mit x im Ergebnis. *) ReplaceAll[dual, Rule[u, x]] ] ] </textarea> <script> var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), { mode: 'text/x-mathematica', lineNumbers: true, matchBrackets: true }); </script> <p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p> </article>